

Integrative Oncology: Implementing Patient-Centred Care

JUNE 2020

CONTENTS

EXECUTIVE SUMMARY	5
Integrative Oncology: Implementing Patient-Centred Care	5
Hallmarks of Cancer	5
The Accelerators: Oncogenes	7
From Proto-oncogene to Oncogene	7
Box 1: Viral Oncogenes	9
Broken Brakes: Tumour Suppressor Genes	
A Brief History of Modern Oncology	
Box 2: Questioning 100 Years of Mutation Theory	
Conquer the Dividing	
Defeat the Tumour Before the Body is Defeated	
Adverse Effects of Chemotherapy Lowered With AHCC [™]	14
The Concept of Immune Surveillance in Cancer	
A Snapshot of the Three E's of Immunoediting	
Elimination – The Domination of Anti-Tumour Immunity	
Equilibrium – The Road to Escape	
Escape – The Strength of the Tumour	
Tumours Exhaust CD8+ T Cells	
AHCC™ Boosts Critical Anti-Tumour Immunity	
AHCC™ Improves Survival Rates	
The Inflammatory Hallmark of Cancer	
The Chilling Consequences of Tumour-Associated Inflammation	
Macrophages: Classical and Alternative Activation	
Dial Down Dangerous Inflammation	
Specialised Pro-Resolving Mediators – Reprogramming the TME	
PEA Soothes Painful Nerves	
Treatment Considerations for Integrative Oncology	
Microbial Health	
Box 3: The Antioxidant Controversy	
Fork in the Road	
Deregulated Cellular Energetics	
Aerobic Glycolysis: The Warburg Effect	
The Role of Lactate in the Tumour Microenvironment	
The Reverse Warburg Effect	
All Roads Lead to Rome	
Two Modes of Metabolism for Growth: Nutrient Uptake and Nutrient Scavenging	
The Glutamine Addiction	
Fats as a Fuel Source	
Metabolic Switching	
Box 4: Can We Supplement with Glutamine?	

What Should a Cancer Patient Eat?	
Ketogenic Diets Attempting to Kick Cancer to the Curb	
Box 5: Live By The Sword, Die By The Sword	
A Plant-Based Diet Does It Again	
Absolute Methionine Dependency	
When the Going Gets Tough, the Tough Get Fasting	
It's a Non-Sandwich Related Wrap	
Box 6: Nutritional Resuscitation and Recovery	
Cancer and Exercise	
The Importance of a Good Night's Rest	
Psycho-oncology – a Central Part of Cancer Care	
The Cancer Personality Debunked	
Phase Models Help us Understand What Patients are Going Through	
Adjustment to Cancer: Anxiety and Distress	
The Distress Thermometer – Open up Communication	
Stress and Health Risk Behaviours Increase Cancer Risk	
The Stress and Cancer Connection	
The Importance of Psychosocial Support	
CBSM Reduces Breast Cancer Mortality and Recurrence	
MBSR Alters Cortisol and Immune Patterns in Cancer Patients	
Fear of Cancer Recurrence	
Support with Natural Medicine	
Photobiomodulation – Shining the Light on Cancer	
Combining PBM with Cytotoxic Anticancer Therapies	
Hyperthermia	
Hyperbaric Oxygen: an Adjunctive Therapy in Cancer	
Protective Role of Vagal Nerve Stimulation in Cancer	
Intravenous Vitamin C	
Screening Tools for Early Detection and Surveillance	
Conclusion	
REFERENCES	
ABBREVIATIONS PRESENTATION SLIDES	
Integrative Oncology	
Tumour Microenvironment and the Hallmarks of Cancer	
Oncogenes	
Tumour Suppressor Genes	
Cancer Therapy Mechanisms and Side Effects	
AHCC™ and Ginger	
Case Study: Lobular Breast Cancer	
Antioxidant Awareness	
Microbiome Health	
Dysregulated Energetics	

TEC	HNICAL DATA SHEET	216
	Psycho-Oncology	.198
	Novel and Emerging Therapies and Screening	.183
	Case Study: Post Operative Pain	.180
	Peripheral Neuropathy and PEA	
	Specialised Pro-Resolving Mediators	.172
	Low Grade Inflammation	.168
	Case Study: Breast Cancer	.164
	Immune Suppression	.152
	Sleep and Exercise	.143

EXECUTIVE SUMMARY

INTEGRATIVE ONCOLOGY: IMPLEMENTING PATIENT-CENTRED CARE

"I was 30 when I received the news from my specialist. He said they found something in my blood work; that it was leukaemia. He started talking about the disease and treatment options, but I wasn't taking it in, I just watched him fan out brochures for different drugs on his desk, pointing at graphs and side effect profiles. I caught the vital information. I'd know in the first three months if treatment was going to work. I'd be taking medication for the rest of my life. Having children in future was unlikely. There was no time to retrieve eggs. I had to make a decision about the treatment plan on the spot. I had to book in a bone marrow aspiration as soon as possible.

I made the decision, I booked the procedure, I paid the bill and walked out of the hospital. Now what?"

Reading stories told by patients faced with this reality, a common theme that arises is one of feeling left out of the picture. In the whirlwind of appointments and a flood of information, the patient can feel like they have taken a back seat to this part of themselves which is proliferating, beyond control.

However, there is so much more to the patient journey than the mechanisms of carcinogenesis and cancer treatment. By definition, patient-centred care ensures that the patient's values guide the treatment approach. It prioritises physical comfort, emotional wellbeing and social support.¹ Bringing the patient to the centre of care ensures their experience is infused with a sense of dignity and humanity.

Here, natural health care Practitioners are in a place where they can walk with patients through this seismic shift in their lives; seeing the patient in front of them, hearing their story and playing an integral role as part of the team accompanying the patient on their journey.

"To restore the human subject at the centre – the suffering, afflicted, fighting, human subject – we must deepen a case history to a narrative or tale; only then do we have a 'who' as well as a 'what', a real person, a patient, in relation to disease – in relation to the physical."

- Oliver Sacks MD

For Practitioners this can be daunting, but by facing it with humility and curiosity, this challenge can be incredibly rewarding too. This is a unique opportunity for Practitioners to walk with their patients in appreciation of their journey.

The goal of this seminar is to arm Practitioners with the tools and confidence they need to support their patient's experience of cancer therapy, reduce the side effects of treatment, and optimise treatment efficacy. This seminar will increase your understanding of how cancer develops and the mechanisms of cancer therapy, facilitating effective communication with the patient's primary care physician. Furthermore, this seminar will highlight where Practitioners have an opportunity to utilise their skills in holistic care, improving diet and lifestyle factors which support patients to live well through this period of time. Finally, learn the integral role of supporting mental health in patient centred care and integrative oncology, and the important role of the natural health care Practitioner as a key part of the support team.

Hallmarks of Cancer

The word cancer, originating from the Greek word for crab, refers to the long tendrils radiating out from the centre of a tumour – starkly different in appearance to the well-organised nature of healthy tissue. The cause of this abnormal cell growth has been a subject of enquiry for centuries. In 1775, Percivall Pott demonstrated the association between chimney soot and scrotal cancer, and so began the understanding of how exposure to some chemicals leads to carcinogenesis. Since then, viruses and hereditary conditions associated with the development of cancer have been discovered, offering explanations which sometimes sound contradictory. Regardless of the cause, some shared features appear to be required for the development of the myriad of conditions collectively known as cancer.

These features were laid out in a seminal article written by researchers Hanahan and Weinberg in 2000, and were named the six hallmarks of cancer, described below:

- Sustained proliferation: Unlike normal cells, cancer cells can proliferate in the absence of growth factors. This hallmark involves oncogenes (see page 7), which can up-regulate receptors and increase the production of, or mimic, growth signals;
- Growth suppressor evasion: Normal cells contain antigrowth signals which divert cells from proliferation towards quiescence or differentiation. Mutations in tumour suppressor genes (see page 10) can deactivate growth suppressors, or cause cells to be unresponsive to their action;
- Replicative immortality: In cancer, there is an uncoupling of a cell's growth programing, and the signals the cell receives from its environment. Mutations in tumour suppressor genes can enable cells to replicate unchecked for generations. Cancer cells also display an upregulation of telomerase, an enzyme that offsets cellular aging;
- Sustained angiogenesis: Tumours cannot live without an abundant supply of blood and nutrients. In order to survive they display increased expression of endothelial growth factors;
- Apoptosis evasion: Programed cell death (apoptosis) protects healthy tissue by halting proliferation in the face of critical malfunction. Apoptosis can involve oncogenes and mutations in tumour suppressor genes, but also involves changes in mitochondrial death signalling; and
- Invasion and metastasis: One of the most well-known characteristics of cancer cells is their ability to invade other tissue. This process involves alterations in cell adhesion molecules and degradation of the extra cellular matrix.²

Twenty years later, these six hallmarks still stand up to scrutiny, although they have since gained two 'emerging hallmarks' and two 'enabling characteristics' (Figure 1).

Emerging hallmarks:

- Dysregulated energetics: Cancer cells display altered energy metabolism and mitochondrial function, fuelling cellular proliferation (explored in more detail on page 29); and
- Immune evasion: Immune surveillance ensures that transformed cells are destroyed, however, cancer cells actively evade detection and attack from the immune system (explored in more detail on page 15).

Enabling characteristics:

- Genetic instability: Cancer cells display an increased rate of mutation and reduced deoxyribonucleic acid (DNA) repair, which allows for further mutations and enables alterations characteristic of the other hallmarks; and
- Inflammation: Tumour associated inflammation enhances tumourigenesis and progression. Furthermore, inflammation contributes to the other hallmarks; for instance by upregulating growth factors and altering the extracellular matrix, thereby encouraging angiogenesis and invasion and metastasis (explored in more detail on page 21).³

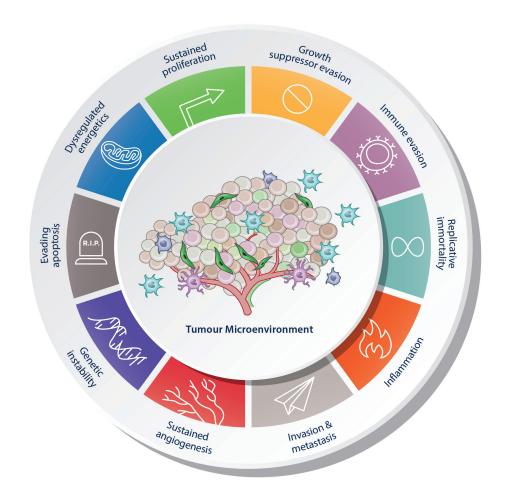


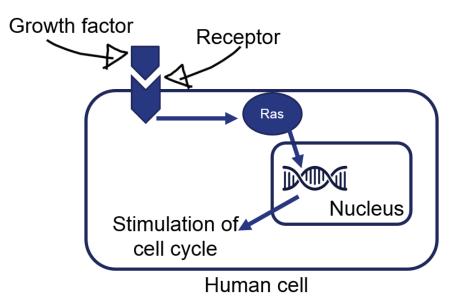
Figure 1: The six hallmarks, two emerging hallmarks and two enabling characteristics of cancer.

It has become clear that cancer is more than just the sum of the cancer cells. The tumour microenvironment (TME) contains extracellular matrix, blood vessels and cell types which enable tumour progression, such as inflammatory immune cells and fibroblasts. Together, the contents of the TME contribute to the hallmarks of cancer to promote and protect the tumour.⁴

The Accelerators: Oncogenes

The journey towards the discovery of oncogenes, that is, genes which have the potential to cause cancer, began in 1909 when a poultry farmer presented researcher Peyton Rous with a hen exhibiting a large growth. When Rous took some of the tumour and processed it, removing all solid material, the remaining liquid was able to induce tumours in other chickens. This seemed to indicate that the tumour was due to a 'filterable agent', i.e. something of non-cellular origin. Later, this filterable agent was identified and named: a retrovirus called Rous sarcoma virus (RSV). To explain this phenomenon, Huebner and Todaro proposed the oncogene hypothesis in 1969. They suggested that viruses contained genes which could transform cells, thus leading to cancer development. After much investigation, it was found that an RSV gene called Src was kick-starting mutations in these unfortunate chickens. Intriguingly, while the virus caused unchecked replication in the chicken's cells, Src seemed to be dispensable for viral replication, leading to questions about its origins. Researchers were able to determine that Src was in fact stolen by the virus from avian origin. That is to say, this gene already existed in the chicken without causing cancer. It was only when RSV caused Src to be over expressed, that it became problematic.⁵

From Proto-oncogene to Oncogene


It is now understood that oncogenes originate from genes called proto-oncogenes, which regulate normal, healthy cellular growth and division. However when proto-oncogenes are altered, they can become oncogenes, leading to sustained proliferation and cancer. The mutations that produce oncogenes are referred to as gain-of-function mutations. This means that usually only one gene copy needs to be affected in order to create problems. These mutations tend to be acquired (rather than inherited), and can be caused by carcinogens such as radiation, smoke and other environmental toxins. Some viruses, such as human papilloma virus (HPV), can also produce oncogenes.

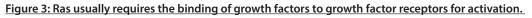

A proto-oncogene can become an oncogene by missense mutations, gene amplification or translocation.⁶ A missense mutation will cause a change to a gene small enough that it produces a protein which is ever so slightly different from the product of an un-mutated gene. In the case of a proto-oncogene, a missense mutation can shift the gene in a way that causes it to be an oncogene (Figure 2).

Figure 2: A missense mutation, results in a protein that is slightly different from the product of a proto-oncogene.

A good example of oncogenic, gain-of-function, missense mutations, are that of the RAS genes (HRAS, NRAS and KRAS), which were in fact, the first oncogenes to be discovered. KRAS is the oncogene most commonly associated with human cancer, being mutated in 25% to 30% of tumours.⁷ Normally, the RAS proto-oncogenes produce Ras* proteins, which require activation in order to initiate cell growth and differentiation. This occurs when a particular growth factor binds to their respective receptor, causing a cascade of events which activates the Ras protein (Figure 3). When RAS genes are mutated, they produce a protein that doesn't need to be activated to move the cell cycle forward. It does so independent of growth factor binding, leading to sustained and unchecked proliferation.⁸

Amplification occurs when a gene is copied, with each gene copy producing a corresponding amount of protein (Figure 4). If amplification occurs in a proto-oncogene it becomes an oncogene, driving the cell cycle forward, leading to sustained proliferation.⁹ For example, the gene HER2 is a proto-oncogene that promotes cell proliferation and opposes apoptosis. Human epidermal growth factor receptor 2 (HER2) is amplified in 15% to 20% of breast cancers,¹⁰ and is associated with more aggressive disease and poorer prognosis. Identification of the HER2 oncogene has opened the way for targeted treatments, specific for HER2 positive breast cancers.

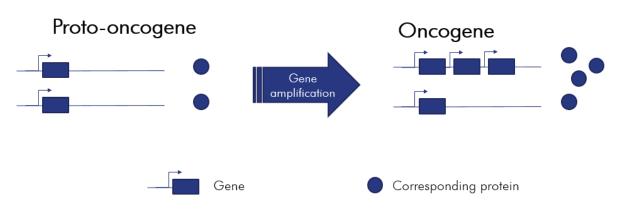


Figure 4: Gene amplification leads to an increase in protein production which drives proliferation.

Translocation is another mechanism by which a proto-oncogene becomes an oncogene. Proto-oncogenes have gene promotors that are highly regulated, only switching on the gene when the cell cycle needs to be pushed forward (seen on the top, left-hand side of Figure 5). If this gene is translocated to a promotor specific to a gene that needs to always be switched on (for example, a house keeping gene), it will likewise be constantly expressed, becoming an oncogene (seen on the bottom, right-hand side of Figure 5).¹¹

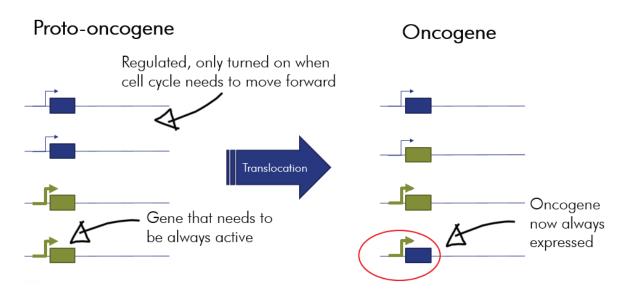


Figure 5: When a proto-oncogene is translocated to a promotor which is always switched on, it becomes an oncogene.

Box 1: Viral Oncogenes

Chickens are not the only ones at risk of cancer-causing viruses. Some viruses contain oncogenes, which, when inside a human cell, can drive sustained proliferation. Viral oncogenes can do this by activating proto-oncogenes within the human cell, so they are always expressed. They can also inhibit tumour suppressor genes. HPV, for instance, contains the oncogene E6, which produces a protein that binds to and inactivates p53. This protein, expressed by the p53 tumour suppressor gene, normally prevents proliferation and promotes apoptosis. It's inhibition by HPV explains why this virus is associated with higher rates of cervical cancer (as well as cancer of the anus, vulva, vagina, penis and oropharynx). In fact, two types of HPV cause 70% of cervical cancer.¹²

Broken Brakes: Tumour Suppressor Genes

While oncogenes lead to sustained proliferation by putting the cell cycle pedal to the floor, in cancer, tumour suppressor genes lose their ability to hit the brakes. Mutated tumour suppressors originate from genes that regulate cell cycle arrest, apoptosis, senescence, DNA repair and differentiation.¹³ The tumour suppressor gene p53, known as the 'guardian of the genome', is the most commonly mutated gene in human cancer, being present in more than half of cases.¹⁴

RB1, the first tumour suppressor gene to be identified, codes for the Rb protein, which prevents cell cycle progression. Mutations in RB1 are associated with many cancers, but it is most well-known for being involved in retinoblastoma. For a long time a geneticist called Alfred G. Knudson had studied patients with retinoblastoma, a type of retinal cancer, meticulously recording information about the occurrence of tumours. He noticed that heritable retinoblastoma occurred early in life, and had a bilateral presentation, with multiple tumours. Nonheritable retinoblastoma on the other hand, occurred later in life, and had a unilateral presentation, with one tumour. This discrepancy can be explained by the two-hit hypothesis, proposed by Knudson in 1971 (Figure 6). The loss-of-function that occurs in mutated tumour suppressor genes is recessive. When this occurs in one allele it isn't enough to cause carcinogenesis. Those with heritable retinoblastoma inherit, through the germline, a mutation in RB1 which is present in every cell. This is the first-hit. It only takes a second-hit for cancer to develop. However, those with non-heritable retinoblastoma need to incur both hits to the RB1 gene, explaining why it typically occurs at a later age.¹⁵

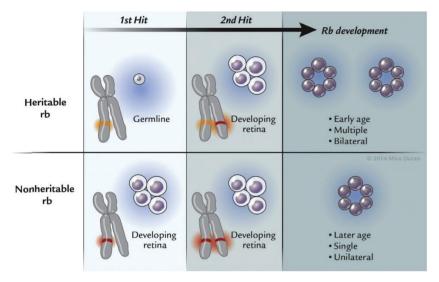


Figure 6: The two-hit hypothesis, as shown in the development of retinoblastoma.¹⁶

While the two-hit hypothesis has been a helpful model for understanding the link between mutations in tumour suppressor genes and cancer, it has been criticised for being too simplistic. Studies of tumour suppressor genes show that the 'second-hit' may not in fact be a mutation. For instance, gene expression can be inhibited through epigenetic mechanisms or abnormal transcription factor regulation. Furthermore, the proteins that are coded for by a tumour can undergo degradation or be 'mislocalised', essentially preventing the end product from regulating the cell cycle.¹⁷

Box 2: Questioning 100 Years of Mutation Theory

The somatic mutation theory, which places genetic mutations as the initiator of malignancy, began in 1914 and has been the dominant theory of carcinogenesis since. It postulates that cancer begins with a mutation which gives a cell a growth advantage. The cell then clones itself, accumulating DNA mutations that continue to encourage proliferation. Here, mutations are central, and necessary for cancer to develop. However, this theory has been challenged and some have suggested that the presence of mutations in tumour samples may be misrepresented as the underlying cause of cancer.¹⁸ Critics of the somatic mutation theory point out that several studies surveying tumours found zero genetic mutations.¹⁹ On the other hand, approximately 10% of the healthy population over 65 years old display driver mutations that are often seen in leukaemia. In fact, all cells in all people display small mutations in cells which similarly clone themselves, forming a mosaic of slightly differing genetic material.²⁰

The tissue organisation theory has been proposed as an alternative to the somatic mutation theory. In this model, DNA mutations are a by-product of carcinogenesis, rather than its cause. Instead, dysfunctional tissue organisation leads to cancer development and genetic instability. The proponents of this theory cite evidence of dysfunctional morphostats, signals that keep tissues differentiated and well organised; altered mechanical forces, which play a role in tissue development; and bioelectric changes, as possible alternatives to mutation driven carcinogenesis. Supporting this theory is the existence of compounds such as chloroform, which induce tumours, without damaging DNA. Instead, these compounds seem to lead to carcinogenesis by disrupting gap junctions.²¹

While it is often repeated that cancer is a genetic disease, it is far from definitive that mutations are the cause of cancer. There is no doubt that genetic instability plays a role in carcinogenesis, however there are other important systems at work.

A Brief History of Modern Oncology

Whilst genetic mutations have largely been the focus of the causes of cancer, this unfortunately provides little benefit in treating existing cancers. For more than 70 years, oncology has primarily focused on inhibiting the cell cycle as means of strangling this rampant cell proliferation. Over the decades, the three prongs of attack in oncology – surgery, chemo- and radiotherapy - have yielded intermittent result. In particular, chemotherapy has lost some horrific battles, but slowly, trial by trial, it is slightly winning the war.²² Along this journey there have been some additions to the oncologists' toolkit that have produced dramatic results, albeit often only in specific cancers.

For example, imatinib has been an overwhelming success for the treatment of chronic myelogenous leukaemia (CML).²³ Likewise, trastuzumab, a 'targeted therapy', has been a game changer for aggressive, early stage, and HER2-positive breast cancer. Additionally, the relatively recent deployment of immunotherapies, such as PD-L1 inhibitors, have yielded significant benefits to a wide range of advanced cancers.²⁴

The successes of traditional therapies, peppered with the occasionally quantum leap, over the decades have now cumulated in meaningful results for cancer patients. For instance, the five-year survival rate in Australia has extended for almost all cancers over the past 30 years (Figure 7).²⁵

Integrative Oncology: Implementing Patient-Centred Care

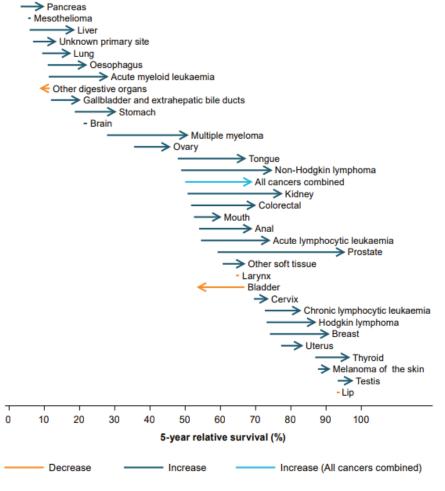
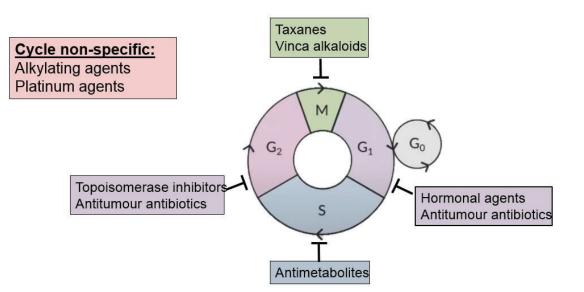



Figure 7: Australian five-year survival of cancers between 1986-1990 and 2011-2015.²⁶

Conquer the Dividing

Despite the expanding toolkit in oncology, chemotherapy is often a core treatment for many cancer patients. Chemotherapy is a broad term for a number of drugs that act to inhibit the cell cycle, i.e. cell division. The cell cycle is typically broken down into five distinct stages: two growing phases (gap [G1 and G2]), a DNA synthesis phase (S), the cell division phase (M [mitosis]) and a resting phase (G0). Chemotherapies are an eclectic mix of drugs that are difficult to group. One approach is to group the class of chemotherapies based on how they inhibit the cell cycle (Figure 8). Appendix 1 further outlines the classes and common use of chemotherapies to help Practitioners better understand the regime a cancer patient may undertake.

Figure 8: Chemotherapies act to inhibit the cell cycle.

In addition, both chemo- and radiotherapy cause oxidative stress, DNA damage and subsequent cellular apoptosis, as part of the mechanism of action. They do this to varying degrees as listed in Table 1.²⁷ For more information about oxidative stress and the use of antioxidants during cancer, see page 27.

Table 1: Cancer treatments that induce oxidative stress.²⁸

High oxidative stress	Low oxidative stress
Radiotherapy	Vinca alkaloid
Alkylating agents	Taxanes
Anthracyclines	Anti-metabolites
Epipodophyllotoxins	
Platinum coordinated complexes	
Camptothecins	

Defeat the Tumour Before the Body is Defeated

As Practitioners and patients are undoubtedly aware, the use of chemotherapy often comes at a heavy cost. Traditional chemotherapies are non-discriminatory, rather than 'targeted,' and thus will inhibit all cell division – whether it's a cancer cell or a healthy cell. The view is, as cancer cells divide more rapidly than normal cells, the body will lose less in this war of attrition; defeat the tumour before the body is defeated. Additionally, chemo- and radiotherapy induce oxidative stress, genomic instability and inflammation. These insults not only also add to a long list of side effects from chemotherapy (Table 2) but some researchers fear that these stressors also may contribute to cancer reoccurrence in the future.^{29,30}

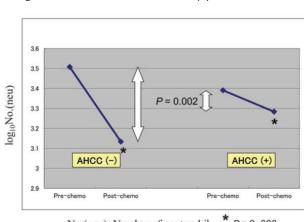
Table 2: Common side effects from chemo- and radiotherapy.³¹

Side effect	Prevalence	Mechanism/contributing factors
Fatigue	50-90%	Inflammation, anaemia, pain, stress
Anxiety and depression	80%	Stress of cancer diagnosis and therapy, uncontrolled pain, metabolic abnormalities e.g. anaemia, endocrine abnormalities, medications
Sleep issues	50-90%	Medication side effect, stress, altered diurnal rhythm, physical inactivity, pain, environmental
Pain and neuropathy	≥40%	Can originate from primary and metastatic sites or from treatment
Anorexia and cachexia	50-80%	Systemic inflammation, nutritional insufficiency
Nausea and vomiting	~60%	Medication side effects
Mucositis	40-60%	Inflammation, neutropaenia, barrier degeneration

This information is in no way to discourage the use of traditional therapies; as it is highlighted above, the overall benefits of modern oncology has been life changing. However, it is important to recognise the costs as well as the benefits of therapy, and more importantly, to identify where complimentary therapies may play a role to mitigate these side effects.

Adverse Effects of Chemotherapy Lowered With AHCC™

When it comes to addressing the side effects of cancer therapy, active hexose correlated compound (AHCCTM), a derivative of shiitake mushroom, offers a safe and effective strategy.


Along with the gastrointestinal (GI) complaints listed above, diarrhoea, constipation³² and hepatotoxicity³³ can be common adverse effect of chemotherapy. AHCCTM has shown to be hepatoprotective and when taken alongside chemotherapy, at a dose of 3 g/d over four weeks, significantly lowered elevated alanine transferase (ALT) levels in 85% of patients with various cancers.³⁴ Furthermore, patients experienced less appetite suppression, changes in bowel movements, nausea and vomiting when supplementing with AHCCTM.³⁵

Importantly, $AHCC^{TM}$ may also assist with improving patient quality of life (QOL), which is commonly impacted throughout cancer therapy. Treatment with $AHCC^{TM}$ at 6 g/d significantly improved mental stability, general physical health and engagement in everyday activities for patients with hepatocellular carcinoma.³⁶

Some cancer therapies suppress bone marrow function, and therefore the production of red and white blood cells (WBC), referred to as myelosuppression. This adverse effect can lead to serious health complications including infections, thrombocytopenia and severe anaemia. Myelosuppression is managed with blood transfusions, yet a trial using AHCC[™] supplementation dramatically prevented this requirement. A group of 25 patients with advanced head and neck cancer receiving chemotherapy plus 3 g/d of AHCC[™] daily required 81% less blood transfusions.³⁷

Another study observed less incidence of thrombocytopenia cases when 3 g/d of AHCCTM was provided in the second cycle of chemotherapy, when compared with the first cycle without AHCCTM. In addition, neutropenia was reduced and neutrophil count was markedly increased in the second cycle compared with the first cycle (Figure 9).³⁸ Granulocyte colony-stimulating factor (G-CSF) is used to boost low WBC counts, however this treatment is not without side effects. AHCCTM at a dose of 1 g/d for 12 weeks, significantly lowered the requirement of G-CSF in breast cancer patients (stages I, IIA and IIIB) receiving concomitant chemotherapy.³⁹

No.(neu); Number of neutrophil P = 0.003

Figure 9: Addition of AHCC™ protected against diminished neutrophil counts post chemotherapy.⁴⁰

Zingiber officinale (ginger) is well-known for its anti-inflammatory and anti-emetic effects, and has demonstrated potential in supporting patients on chemotherapy. For example, alongside chemotherapy treatment, ginger extract, at doses ranging from 500 mg/d to 1.2 g/d can reduce nausea.^{41,42} In a randomised double-blind placebo-controlled trial, 1 g/d of ginger, when combined with an anti-emetic, significantly attenuated anticipatory, acute and delayed vomiting in breast cancer patients.⁴³ For many individuals receiving treatment, compounding the misery of digestive side effects is profound fatigue. Interestingly, ginger has been found to assist with this presentation, as 1.2 g/d ginger extract for five days during chemotherapy resulted in 29% less fatigue, improving patients' QOL during therapy.⁴⁴

Furthermore, in animal studies, ginger has shown to be protective against cisplatin-induced hepatotoxicity, where supplementation lowered the liver enzymes ALT and aspartate aminotransferase (AST). Additionally, it reduced lipid abnormalities, which are often associated with chemotherapy.⁴⁵

The combination of $AHCC^{TM}$ and Ginger can offer multiple benefits for cancer patients, helping to offset some of the side effects of cancer treatment. This can have huge implications for patients' long-term health outcomes by improving their ability to continue on their treatment and reducing the limitation that side effects cause to dosing. To understand how $AHCC^{TM}$ can further benefit patients undergoing treatment for cancer, a deeper exploration of one of the hallmarks of cancer, immune evasion, is required.

The Concept of Immune Surveillance in Cancer

For over 100 years, immunological and biological researchers have studied the interaction between the immune system and cancer. A brief look at history reveals the developments from research that have allowed for a greater understanding of how the immune system interacts with tumour cells.

- 1891 American surgeon William Coley noted the effects of immunity in tumours. Coley injected live *Streptococcus pyogenes* directly into the lymphosarcoma of a patient, which resulted in the tumour regressing,⁴⁷
- 1909 Noble prize winning physician and scientist Paul Erlich proposed that the immune system protected the host against cancer;
- 1967 Virologist Frank McFarlane Burnet and biologist Lewis Thomas, proposed the *immunosurveillance hypothesis*, postulating that the immune system controlled tumour development; and
- 2002 Robert D Schreiber's group developed the *immunoediting theory* which permanently changed the understanding of immune function in relation to cancer. This theory highlighted how the immune system may control the development of cancer, or paradoxically shape the immunogenicity of cancer cells making them more resistant to anti-tumour immunity.⁴⁸

A Snapshot of the Three E's of Immunoediting

The immunoediting theory comprises of three phases which determines the fate of the tumour.

- 1. Elimination
- 2. Equilibrium
- 3. Escape

Elimination – The Domination of Anti-Tumour Immunity

This phase continually occurs in the body⁵⁰ and supports the immunosurveillance theory whereby anti-tumour immunity dominates.^{51,52,53} Elimination is dependent upon the collaboration of the innate, adaptive and complement immune systems.⁵⁴ Key players include cytotoxic natural killer (NK) cells,^{55,56} type one dendritic cells (DC1),^{57,58} CD4⁺ T cells and CD8⁺ T cells.

NK cells police the internal environment for abnormalities⁵⁹ and as such, play a vital role in controlling tumour growth and metastasis, with higher rates of malignancies being associated with inadequate NK cell populations and/or function.⁶⁰ When in cytotoxic attack mode, NK cells attach to tumours and release granules called perforins and granzymes. Perforins pierce the cell membrane and granzymes cause tumour cell apoptosis.⁶¹ However, before this can occur the NK cell relies on two ways to recognise the tumour:

- 1. Through receptor mediated activity between the NK cell and the tumour,⁶² or
- 2. From the release of interleukins (IL) and chemokines from tumours or DC1.63

Receptor mediated activity depends on the interactions between two receptor types on the NK cell. The receptor can either be stimulatory, which, when activated, sends the NK cell into a killing frenzy, or inhibitory, which acts as molecular brakes shutting off NK cell cytotoxic function. The major histocompatibility complex (MHC) class I receptor, common on host cells, sends signals to the NK cell inhibitory receptor that this is 'self', reducing the risk of autoimmunity.^{64,65} Certain tumours may down-regulate, degrade or invert this receptor, thus upon policing, the NK cell does not receive the brake signal and launches an attack. Attack may also occur from an overexpression of tumour stress molecules which override inhibitory receptor activity and heighten stimulatory receptor responses.⁶⁶ Lastly, NK cells possess an additional receptor that picks up immunoglobulin G (IgG) antibodies, which can initiate tumour cell death.⁶⁷

Signaling molecules, either directly from the tumour or from DC1 assist NK cells to identify tumour cells. In fact, an important relationship exists between NK cells and DC1 with both supporting the recruitment and function of one another to the tumour site. This was demonstrated in a melanoma animal model where genetically depleted NK cell mice had lower populations of DC1 cells at the tumour site.⁶⁸ Further, an abundance of DC1 within the tumour microenvironment (TME) is associated with accelerated tumour elimination and better chances of survival.⁶⁹ In addition, DC1 secretes IL-12 which elevates NK cell synthesis of interferon (INF)- γ ,⁷⁰ recruiting macrophages for cleanup and repair.⁷¹

DC1 also activates antigen-specific CD4⁺T cells via MHC II ligands, and shifts CD8⁺T cells into cytotoxic mode through IL-12 secretion,⁷² the cytokine associated with a prolonged immune response.⁷³ Furthermore, patients with melanoma who had higher populations of DC1 were more responsive to a type of immunotherapy, known as anti-programmed death-1 (PD-1) therapy, which enhances T cell function (Figure 10).⁷⁴

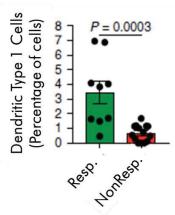


Figure 10: DC1 cell populations in melanoma cancer patients receiving anti-PD-1 therapy.75

Cytotoxic CD4⁺ T cells both alone, and in conjunction with CD8⁺ T cells, mediate the adaptive immune anti-tumour response.⁷⁶ A growing body of evidence indicates tumour antigen-specific CD4⁺ T cells play a pivotal role in coordinating tumour eradication by facilitating:

- Activation and maturation of dendritic cells;
- Synthesis of cytokines essential for differentiation or maintenance of T-cell responses;
- Activation of B cells to produce tumour antigen-specific antibodies; and
- Together with DC1, enhancement of CD8⁺ T cell cytotoxicity.⁷⁷

CD8⁺T cells function similarly to NK cells, having stimulatory and inhibitory receptors, as well as releasing cytotoxic granules, tumour necrosis factor (TNF)- α and INF- γ . CD8⁺T cells become cytotoxic after activation by CD4⁺T cells and DC1, playing a vital role in tumour elimination and equilibrium.

Equilibrium – The Road to Escape

During this phase the immune system holds the tumour in a state of functional dormancy, restricting their transition into the growth phase.^{78,79} Unfortunately, the longer the tumour stays in this dormant phase, the greater its chances of becoming resistant to immune control due to its ability to edit or alter gene expression of proteins that would normally be recognised by the immune system.^{80,81}

High proportions of CD8⁺T cells and NK cells are required to maintain equilibrium.^{82,83} A balance between cytokines IL-12, a promotor of immune persistence, and IL-23, a promotor of tumour growth, play an important role in determining who will win the fight.⁸⁴ However, continued pressure from the immune system may drive the tumour cells to undergo both genetic and epigenetic changes resulting in a generation of cancer cells that can resist immune recognition and invoke immunosuppression.⁸⁵

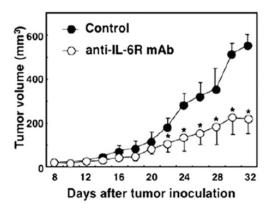
Escape – The Strength of the Tumour

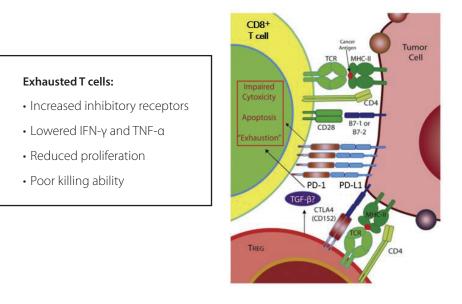
Several factors, including those discussed below, contribute to the exponential growth of the tumour and the development of the TME,⁸⁶ features of the escape phase.

Poor immunogenicity: Mutations within cancer cells may lower or completely stop expression of specific antigens recognised by the immune system. In other cancers, MHC I receptor expression may be retracted or degraded allowing it to dodge the cytotoxic CD8⁺T cell.^{87,88}

Immune suppression: This results from a combination of inflammatory proteins and antigens produced directly from the tumour, and from the recruitment of additional cells which build the TME. Some mechanisms exploited by tumours include:

- High expression of IL-6 which is involved in proliferation, migration and angiogenesis. The continued secretion of IL-6 interrupts MHC II antigen presentation which suppresses CD4⁺ T cell mediated immunity⁸⁹;
- Tumour secretion of IL-6 increases DC and macrophage release of arginase which reduces CD4⁺ T cell-mediated immunity⁹⁰ and blunts cytotoxic CD8⁺ T cell function.⁹¹ Thus, tumour synthesis of IL-6 slows anti-tumour immunity⁹² allowing for exponential tumour growth (Figure 11);




Figure 11: Tumour growth with and without anti-IL-6 antibodies.93

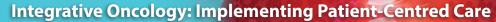
- Production of prostaglandin (PG) E2 affects communication between DC1 and NK cells,^{94,95} blocking the expression of NK cell receptors allowing tumours to remain hidden⁹⁶;
- Secretion of lactate by the tumour inhibits DC1 functions⁹⁷;
- The expression of a transmembrane protein that sends a 'don't eat me' signal to macrophages⁹⁸;
- The synthesis of transforming growth factor beta (TGF-β) which lowers NK cell tumour recognition and communication with DC1 cells⁹⁹;
- Recruitment of cells including immune cells to build the TME (Table 3). Like a police officer corrupted by the crime lords, certain immune cells act to both protect the tumour from NK and CD8⁺ T cells, and secrete substances to enhance tumour growth^{100,101}; and
- Induced CD8⁺ T cell exhaustion.¹⁰²

Tumours Exhaust CD8⁺ T Cells

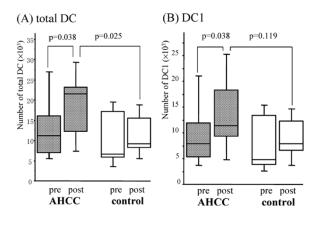
Tumour cells and the TME induce T cell exhaustion, which occurs due to the overexpression of inhibitory ligands such as programmed death ligand-1 (PD-L1) that bind with inhibitory receptors (PD-1 receptors) on CD8⁺T cells.^{103,104} Persistent tumour antigen stimulation results in an up-regulation of PD-1 receptors on T cells applying molecular brakes. With no foot on the accelerator, the CD8⁺T cell has poor cytotoxic activity (Figure 12).¹⁰⁵ This is seen in cancer patients where higher percentages of exhausted CD8⁺T cells are associated with a poorer prognosis.¹⁰⁶

TCR: T cell receptor; MHC: Major histocompatibility complex; CTLA4: Cytotoxic T-lymphocyte-associated protein 4; PD-1: Programmed death-1; PD-L1: Programmed death ligand-1

Figure 12: Tumours induce CD8⁺T cell exhaustion.


Table 3: TME demographics.

TME Cell Types	Function
Tumour associated macrophages (TAMs)	 Shift from M1 to M2-like phenotype under the influence of the tumour (discussed further on page 22); and Secrete TGF-β, IL-10 and proteolytic enzymes involved in extracellular matrix (ECM) remodelling.¹⁰⁸
Myeloid derived suppressor cells (MDSCs)	 Consists of macrophages, granulocytes and immature dendritic cells; Secrete extracellular L-arginase which inhibits T cell function; and Increase reactive oxygen species/ reactive nitrogen species production.¹⁰⁹
Tumour associated neutrophils (TANs)	 Tumour secreted TGF-β induces polarisation from anti-tumour to pro-tumour behaviour; and Expresses arginase and pro-angiogenic factors.¹¹⁰
Immature/tolerogenic DC1	 Synthesises and releases TGF-β; and Up-regulates indoleamine 2,3-dioxygenase enzyme activity increasing kynurenine levels which is toxic to NK and CD8⁺T cells.^{111,112,113,114}
T regulatory cells (Treg) [‡]	 Inhibits CD8⁺ T cell and NK cell activity via: Inhibitory cytokine (TGF-β,¹¹⁵ IL-10) secretion¹¹⁶; Metabolic disruption via competition for IL-2^{117,118}; Cytolysis via perforins and granzymes; and Secretion of kynurenine.¹¹⁹
Angiogenic vascular cells (endothelial cells, pericytes and cancer associated fibroblasts)	 Major components of tumour connective tissue.¹²⁰ Provide support, regulate proliferation, angiogenesis, metastasis and immunogenicity.¹²¹ Fibroblasts utilise lactate produced by tumour¹²²; Regulate ECM remodelling; and Release proinflammatory cytokines that induce Treg cells from CD4⁺T cells in TME.¹²³
Cancer stem cells (CSC)	• Form new CSC allowing for tumour growth and metastasis. ¹²⁴


As discussed, the development of cancer is a continual tug of war between anti-tumour immunity and pro-tumour immunity with the stealthy cancer able to recruit certain immune cells in its TME to support exponential growth. Thus, addressing factors that negatively affect immunity, such as poor diet and chronic inflammation, may assist in promoting a powerful immune system, favouring a balance towards cancer elimination.

AHCC[™] Boosts Critical Anti-Tumour Immunity

As previously described, innate and adaptive immune cells are recruited to attack and eliminate cancer cells. Therapeutics such as AHCC^M may serve to promote immune stimulation, as demonstrated in numerous human and animal studies.^{125,126,127,128,129,130,131,132,133,134,135} For example, AHCC^M at 3 g/d for four weeks was shown to increase circulating populations of both dendritic cells (DC) and DC1 (Figure 13).¹³⁶ The increase in DC1 is notable since they are critical for anti-tumour immunity and potentiate the cytotoxic function of NK cells.¹³⁷

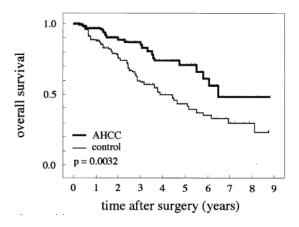
Figure 13: AHCC[™] raises DC and DC1 populations associated with tumour protection.¹³⁸

AHCC[™] has also demonstrated value in combination with chemotherapy in an animal model of liver cancer. AHCC[™] and the anticancer drug 5-fluorouracil (5-FU) produced better outcomes compared 5-FU alone. The addition of AHCC[™] resulted in (Table 4):

- Increased NK cell populations (>50%);
- Greater CD4+:CD8+ ratio (associated with better immunological activity); and
- Lowered tumour weight and volume and increased the apoptosis index of the tumour.¹³⁹

Table 4: AHCC[™] supplementation potentiated the effects of 5-FU in an animal hepatoma model.

Group	CD+ (%)	NK (%)	CD4+/CD8+ (%)
Control	8.7	6.7	2.5
5-FU	9.6	5.0	2.8
5-FU + AHCC™	10.3	10.5	3.9


The effects of AHCC[™] on CD8⁺T cell numbers have also been observed in trials after three weeks¹⁴¹ and eight weeks of supplementation at 3 g/d. In the latter trial, the investigation revealed additional increases in CD4⁺T cells and INF-γ secretion.¹⁴² Since adequate levels of CD4⁺ and CD8⁺T cells and INF-γ is essential for cancer elimination, supporting these immune cells may assist in tipping the balance towards anti-tumour immunity victory.

This information considered, the immune enhancing effects of AHCC[™] may be well indicated in conditions of immunosuppression such as cancer.

AHCC[™] Improves Survival Rates

AHCC[™] not only improves the side effects of cancer therapy and immune function. Increased survival time has also been observed in cancer studies using AHCC[™] in both humans and animals.^{143,144,145,146,147,148,149,150} Forty-four patients with advanced liver cancer, known for poor survival rates, self-administered either placebo or 6 g/d of AHCC[™] until the end of life. At six weeks the placebo group had a 50% mortality rate compared with no fatalities in the AHCC[™] group.¹⁵¹ In another study, post hepatocellular carcinoma surgery patients self-administered either 3 g/d of AHCC[™] or placebo, until the end of life. Hepatocellular carcinoma recurred in 39 of the AHCC[™] group compared with 72 in the placebo group. Further, the AHCC[™] group had 26% less deaths compared with the placebo group (Figure 14).¹⁵²

Figure 14: AHCC[™] improved overall survival rates in hepatocellular carcinoma patients post liver resection.¹⁵³

In conjunction with standard chemotherapy, 3 g/d of AHCC[™] significantly improved survival rates of patients with gastric cancer (stage II and IIIA) and with colon cancer (stage I, II and IIIA). Further, when compared with treatment centres where AHCC[™] therapy was not implemented, the AHCC[™] groups had greater five year survival rates (Table 5).¹⁵⁴

	5 Year Survival % AHCC™ Study	5 Year Survival % Other Japanese Institutions
Stage II gastic cancer	92.3	74.9 – 75.9
Stage IIIA gastric cancer	82.8	53.6 - 61.7
Stage I colon cancer	100	93 – 100
Stage II colon cancer	100	81 – 88
Stage IIIA colon cancer	95.2	73 – 76

Table 5: AHCC [™] improves survival rates in gastric cancer (stage II and IIIA) and colon cancer patients (stage I,II and IIIA)
<u>compared with institutions not utilising AHCC[™]. 155</u>

For further information about *AHCC™ and Ginger* please refer to the technical data or call the Clinical Support Team on 1800 777 648 (Australia) or 0508 227 733 (New Zealand) or email clinicalsupport@metagenics.com.au.

The Inflammatory Hallmark of Cancer

Everyone knows the pain, redness and swelling of inflammation. Acute inflammation can clear infections, heal wounds and maintain tissue homeostasis, but chronic inflammation sets a grim scene for chronic diseases, including the malignant transformation of susceptible cells and tumourogenesis. Consequently, the smouldering environment continues to feed tumour-associated inflammation and endows cancer cells with their hallmarks of genomic instability, metabolic reprogramming, growth and survival, angiogenesis, immune suppression, invasion and metastasis (Figure 15).^{156,157}

Only a few cancers are associated with inherited mutations, with the vast majority, approximately 90%, caused by environmental exposures and somatic (acquired) mutations.¹⁵⁸ Alcohol, tobacco, radiation, pollutants and high-calorie diets are just a few recognised carcinogens.¹⁵⁹ Some chronic infections are also known carcinogens, such as HPV (leading to cervical cancer) and *Helicobacter pylori* (leading to gastric cancer).^{160,161} Linking these diverse carcinogens is their potential to fuel chronic inflammation, either locally in tissues, or systemically.¹⁶²

Interestingly, while some chronic inflammatory diseases increase the risk of certain cancers, others do not. For instance, it remains unclear exactly why inflammatory bowel disease or chronic hepatitis are tumour promoting, yet rheumatoid arthritis and psoriasis do not significantly promote cancer.¹⁶³

On the other hand, being overweight or obese significantly increases the risk of 14 types of cancer, including oesophageal adenocarcinoma, stomach cardia, colon, rectum, liver, gallbladder, pancreas, breast, endometrium, ovary, advanced/fatal prostate, kidney, thyroid and multiple myeloma. Additionally, colon and postmenopausal breast and endometrial cancer risk increases with physical inactivity.¹⁶⁴ Reason being, adipose tissue is more than simply fat storage, but a complex regulator of inflammation and metabolism. Excessive adipose tissue is carcinogenic as it up-regulates certain growth factors and hormones (e.g. oestrogen), and causes metabolic-induced inflammation (meta-inflammation). Adipose expansion can also differentiate adipose-derived tumour supporting cells, which can migrate, infiltrate and progress tumour activity.¹⁶⁵

Furthermore, in a cruel twist, anti-cancer treatments can incite inflammation and perpetuate the disease, but more on this soon.

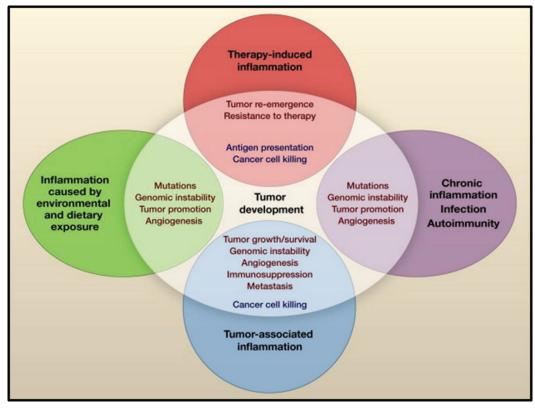


Figure 15: Key inflammatory inputs for tumour development. The central circle lists the hallmarks endowed to cancer cells by each inflammatory input.¹⁶⁶

The Chilling Consequences of Tumour-Associated Inflammation

Host immunity creates an incredibly hostile environment for cancer. As described earlier, the elimination phase is characterised by amassing immune cells, polarised in their most proinflammatory phenotypes, unleashing every immune defence available. If cancer cells survive this onslaught, they can take immune cells as prisoners and re-educate them as the equilibrium phase ensues, which can last for several years.¹⁶⁷ Ever-weakening IFN- γ secreting immune cells attempt to apply pressure, but may only serve to strengthen tumour resistance and develop evasion, whilst increasing genetic instability and mutations.¹⁶⁸ The resulting TME is characterised by suppressed immunity and low-grade inflammation, explaining why tumours can be described as 'wounds that won't heal'.¹⁶⁹

Macrophages: Classical and Alternative Activation

Macrophages can direct opposing proinflammatory or anti-inflammatory tone depending upon their environment. That is, these immune cells set the inflammatory tone of all tissues, including tumours. They achieve this extraordinary plasticity by polarising to proinflammatory M1 macrophages via classical activation or M2 macrophages via alternative activation, which correspond to the T helper 1 (Th1) and T helper 2 (Th2) polarisation of T cells respectively.¹⁷⁰ Under normal conditions, macrophages undergo rapid M1 classical activation to coordinate innate immunity to overcome injuries and infections. As pathogens are cleared and healing commences, M1 macrophages undergo M2 alternative activation to coordinate the resolution of inflammation, scavenge tissue debris and promote angiogenesis to restore homeostasis.¹⁷¹

Importantly, in the TME M1 macrophages *are suppressed*. Once summoned to infiltrate and attack cancer cells, the inflammatory environment suppresses and forces them into an *atypical M2* phenotype, called an M2-like tumour-associated macrophages (TAMs). Unfortunately TAMs sustain an inflammatory and immune-suppressed microenvironment.^{172,173} They are categorised according to the functions they perform, including angiogenesis promoting; metastases promoting; immunosuppressive; and cancer stem cell promoting – each with highly specific and mixed functionality (Figure 16).¹⁷⁴ Due to their high plasticity, TAMs can shift between subtypes based on tumour-specific signals and stimuli.¹⁷⁵ TAMs are a key component of most, but not all cancers, and their quantity and phenotype (e.g. immunosuppressive) is associated with poor patient prognosis.¹⁷⁶

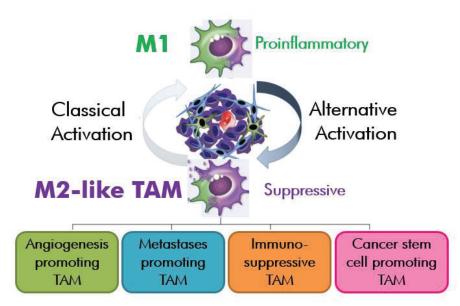


Figure 16: Macrophage plasticity and characterization.¹⁷⁷

The chemotherapy checkpoint inhibitors, anti-PD1 and anti-PD-L1, *remodel TAMs* to reinvigorate anti-tumour cytotoxic CD8⁺ T cells, with significant therapeutic efficacy in a subset of patients.¹⁷⁸ Also, paclitaxel, widely used to treat solid tumours by acting on cell-cycle arrest, stimulate TLR (toll-like receptor)-4 and reactivate immunity against cancer by guiding TAMs toward the M1 anti-tumour phenotype.¹⁷⁹ Unfortunately, the inflammatory side effects of such immune stimulation can cause excessive coagulation or cytokine storms, hindering the application of certain therapies.¹⁸⁰

Cancer surgery (including biopsy), chemotherapy, and/or radiation can all induce proinflammatory and immunosuppressive responses that can increase metastatic outgrowth and tumour recurrence.¹⁸¹ Even anesthesia can impair the resolution of inflammation.¹⁸² Additionally, chemotherapy-generated cell death can provoke tumour growth,¹⁸³ and surgical wounding can impair the efficacy of chemotherapy.¹⁸⁴

Dial Down Dangerous Inflammation

These challenges in oncology turn attention to anti-inflammatory strategies. Non-steroidal anti-inflammatory drugs (NSAIDs), steroidal anti-inflammatory drugs and statins have known efficacy in decreasing morbidity, counteracting chemo-resistance, suppressing tumour progression and improving survival.¹⁸⁵

Prostate cancer, significantly progressed by inflammation, is shown to be impeded by NSAIDs, metformin and statins with welldefined anti-tumour activity. Furthermore, dietary soy isoflavones, vitamin D, pomegranate, green tea and resveratrol are indicated to slow the progression of prostate cancer. Whilst these anti-inflammatory approaches are unlikely to prevent progression in all patients, new research is indicating they may enhance the efficacy of cancer surgery and chemotherapy.^{186,187}

Specialised Pro-Resolving Mediators – Reprogramming the TME

Specialised pro-resolving mediators (SPMs), comprised of lipoxins, resolvins, protectins, and maresins, are endogenously synthesised molecules that orchestrate the resolution of inflammation without suppressing immunity.¹⁸⁸ Specifically, SPMs activate the polarisation of M2 macrophages and the resolution of inflammation. However, chronic inflammation, meta-inflammation and ageing present significant blockades to endogenous SPM synthesis.¹⁸⁹ Likewise, it appears SPM synthesis is suppressed by tumour-associated inflammation. As aforementioned, the inflammatory TME suppresses attacking M1s into tumour-promoting M2-like TAMs.

Interestingly, inducing SPM synthesis via supplementation and/or low-dose NSAIDs, promotes **anti-tumour immunity** via dual antiinflammatory and pro-resolving activity. In particular, lipoxins and resolvins have an 'adaptogenic' effect to reverse cancer biology, compared to resolving non-cancer inflammation, as briefly outlined in Table 6.¹⁹⁰ Emerging SPM research now reveals how inducing these pro-resolving lipid mediators can beneficially modify immunity in target tumour cells, the TME and pre-cancerous lesions (Figure 17).¹⁹¹

Therefore, supplementing *Specialised Pro-Resolving Mediators* is highly indicated to resolve this chronic inflammation.

SPM **Functions in Inflammation Functions in Cancer** Increased M2 polarisation • TAMs to M1 phenotype Lipoxin Decreased neutrophil infiltration Decreased tumour cell proliferation Decreased angiogenesis Decreased tumour cell invasion • Decreased angiogenesis • Decreased pain signal • Decreased tumour cell migration **Resolvin E-series** • Decreased antigen presenting cells and • Decreased tumour growth T cell priming • Decreased pain signal Decreased fibroblast proliferation **Resolvin D-series** Decreased antigen presentation • Decreased tumour cell escape • Decreased pain signals Decreased tumour growth Increased M2 polarisation and • Increased NK cell function and survival efferocytosis Increased Treg recruitment and T cell apoptosis

Table 6: Comparing the effects of SPMs in inflammation and tumours.¹⁹²

Furthermore, the therapeutic effects of omega-3 observed in various cancer types, including breast, colorectal, gastric, pancreatic, oesophageal, prostate, lung, head and neck cancers, and cancer cachexia¹⁹³ are now understood to be driven via SPMs' anti-neoplastic effects.¹⁹⁴ Recent research reveals in animal cancer models that NSAIDs and/or SPMs (specifically resolvins), administered *pre-operatively*, but not post-operatively, prevented micrometastases in multiple tumour resection models, resulting in long-term survival. This pre-operative delivery of resolvins specifically inhibited metastases and induced T cell responses. Synergy was demonstrated when SPMs and NSAIDs were combined, by amplifying anti-tumour activity and preventing surgery- or chemotherapy-induced micrometastases, therefore preventing tumour recurrence and prolonging survival.¹⁹⁵

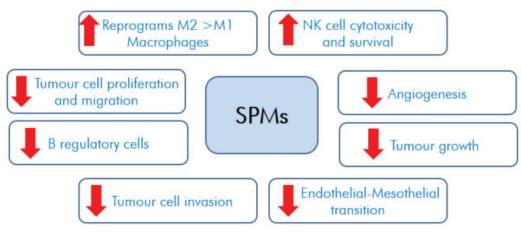


Figure 17: Summary of anti-cancer actions and mechanisms of SPMs.¹⁹⁶

For further information about *Specialised Pro-Resolving Mediators* please refer to the technical data or call the Clinical Support Team on 1800 777 648 (Australia) or 0508 227 733 (New Zealand) or email clinical support@metagenics.com.au.

PEA Soothes Painful Nerves

Chemotherapy-induced peripheral neuropathy (CIPN) affects 30% to 40% of treated patients, often serving as a painful reminder of treatment.¹⁹⁷ Palmitoylethanolamide (PEA) as a standalone therapy or in conjunction with pharmaceutical analgesics, ^{198,199,200,201} is shown to enhance patient QOL and relieve the intensity of several painful neuropathies, with no serious side effects reported.^{202,203,204,205,206}

Safety and efficacy was demonstrated in 20 multiple myeloma patients experiencing neuropathy whilst undergoing chemotherapy (thalidomide and bortezomib). After eight weeks of PEA (300 mg twice daily), pain scores reduced by 24% compared to controls, indicating significant protection of nerve function.²⁰⁷

Another example of efficacy was reported in a prostate cancer case study, where a patient developed significant neuropathy after receiving his second dose of the antineoplastic agent sagopilone. Despite requiring tramadol and pregabalin, the patient still reported 7 out of 10 pain. PEA was added at a dose of 600 mg twice daily and after three weeks of supplementation the patient's pain score reduced to 1 to 2 out of 10. Six months later, he could discontinue analgesics, with only occasional use of paracetamol.²⁰⁸

The debilitating long-standing condition CIPN affects both QOL and the patient's ability to withstand the chemotherapy. PEA offers relief from neuropathy, protects nerves against damage and enhances treatment compliance whilst being well tolerated.²⁰⁹

For further information about *Highly Bioavailable Palmitoylethanolamide (PEA) With Endocannabinoid Action* please refer to the technical data on page 216 or call the Clinical Support Team on 1800 777 648 (Australia) or 0508 227 733 (New Zealand) or email clinical support@metagenics.com.au.

Treatment Considerations for Integrative Oncology

Considering the discussion above, Table 7 outlines the treatment considerations for every cancer patient. These therapies can be used alongside cancer therapy, to reduce side effects and improve patient outcomes.

Considerations	Indications
AHCC™ and Ginger	Reduce side effect of cancer therapy, including: • Nausea and vomiting • Changes in bowel function • Appetite suppression • Myelosuppression Improve QOL Hepatoprotective
Highly Bioavailable Palmitoylethanolamide (PEA) With Endocannabinoid Action	Improve immunosurveillance Reduce chemotherapy induced peripheral neuropathy Reduce pain Improve QOL
Specialised Pro-Resolving Mediators	Reduce tumour sustaining inflammation Improve resolution
Microbiome	support – see below
Further considerations:	 Diet and lifestyle interventions can reduce side effects and improve QOL and patient outcomes: Diet: see page 32 Exercise: see page 36 Sleep: see page 37 Psycho-oncology: see page 38 For novel and emerging therapies see page 43

Table 7: Considerations for cancer patients.

Microbial Health

Given the role of immune surveillance and inflammation in the development of cancer, it is probably no surprise to Practitioners that the gut microbiome has been investigated as a target for cancer management. Indeed, it seems that the gut microbiome not only influences a patient's risk of developing cancer, but it can also alter patient response to cancer treatment.²¹⁰

There are some key organisms and functions of the gut microbiome which appear to reduce cancer risk. For instance, the production of short chain fatty acids, in particular butyrate, induces cell differentiation and apoptosis and is believed to limit cancer development. Likewise, certain organisms metabolise phytochemicals such as polyphenols, flavonoids and glucosinolates to compounds which reduce DNA damage and inflammation, while inhibiting tumour growth. On the other hand, pathogenic microbes have been found in the TME interacting with cancer cells and encouraging growth. For instance, particular strains of *Escherichia coli*, found more often in the mucosa of those with colorectal cancer compared to healthy controls, produce a toxic metabolite which increases the production of growth factors. Pathogenic organisms also produce a host of metabolites that cause inflammation and DNA damage.²¹¹ Therefore, looking after the health of patient's microbiome may reduce the risk of carcinogenesis. However, for those patients who present already having developed cancer, the health of the gut microbiome is still an important consideration.

Chemotherapeutic agents can lead to dramatic alterations in the composition and function of patients' gut microbiome. For instance, the abundance of gut bacteria was 100-fold lower in paediatric patients undergoing treatment for acute myeloid leukaemia, compared to healthy controls. Furthermore, diversity was dramatically reduced. Authors determined that the changes seen in the subject's microbiome could not be explained by changes in diet or by the use of prophylactic antibiotics, but instead were a result of chemotherapy.²¹² In patients with non-Hodgkin's lymphoma undergoing myeloablative conditioning, overall diversity and butyrate producing organisms were reduced, while organisms associated with inflammatory pathways were increased after treatment. Further, patients' capacity for amino-acid and carbohydrate metabolism were reduced, while glycan metabolism was enriched, a profile that has been associated with intestinal inflammation. Chemotherapy induced dysbiosis and the resulting inflammation may be at least in part responsible for the mucositis that many patients develop.²¹³ This is supported by a study in melanoma patients receiving anti-cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) treatment. Immune-mediated colitis is a common side effect of check point inhibitors such as anti-CTLA-4 treatment. In this study, increased levels of organisms in the Bacteroidetes phylum were correlated with resistance to colitis development.²¹⁴

Mucositis is not the only chemotherapy side effect which may be influenced by the health of the gut microbiome. While research is preliminary, animal models have implicated gut dysbiosis, and the associated gut barrier dysfunction and systemic inflammation, in the development of cancer cachexia.²¹⁵ Likewise, it has been suggested that disruption of the gut-brain axis may exacerbate neurocognitive symptoms such as chemotherapy induced cognitive impairment.²¹⁶

Finally, the health of the gut microbiome may impact patient response to treatment. Increased microbial diversity in patients with melanoma receiving anti-PD-1 immunotherapy was associated with a more favourable treatment response, including prolonged progression free survival.²¹⁷ On the other hand, in patients with metastatic renal cell carcinoma who were being treated with immune checkpoint inhibitors, antibiotic use reduced progression free survival and overall survival.²¹⁸

Lactobacillus rhamnosus (LGG[®]) offers a safe and gentle solution for patients going through cancer therapy. Given to patients receiving 5-fluorouracil based chemotherapy for colorectal cancer, 10 to 20 billion colony forming units (CFU) of LGG[®] daily reduced abdominal discomfort and severe diarrhoea frequency, compared to those who did not receive the probiotic. Furthermore, patients receiving the probiotic experienced less bowel toxicity, and required fewer chemotherapy dose reductions and less hospital care.²¹⁹

While LGG[®] has an excellent safety profile, it is important to note that probiotics should not be used during haematopoietic stem cell transplants (HSCT). In one study a greater number of patients receiving LGG[®] developed graft-versus-host-disease, a serious complication of HSCT, compared to those who did not.²²⁰ This study was very small (with 20 in the treatment group and 11 in the control), but given the severity of the complication, caution is advised. High gut microbiome diversity has been associated with higher overall three year survival rates for patients undergoing HSCT,²²¹ therefore if possible, improving patients gut health with probiotics and prebiotics prior to treatment would be a reasonable approach.

There has also been some concern raised over the possible development of systemic infections in immunocompromised patients due to probiotic use, a pertinent consideration for those undergoing cancer treatment. With its wide consumption, LGG® has compelling evidence in favour of its safety. Safety surveillance data from Finland, where LGG® use is very common, reveals that *Lactobacilli* represented only 0.02% of positive blood cultures. Furthermore, while LGG®-like isolates were found in 11 out of 89 strains, on closer inspection they were found to be phenotypically different.²²² Moreover, studies of probiotic supplementation in recipients of solid organ transplants, as well as other immunocompromised patients, found no evidence of systemic infection.²²³ On the other hand,

while still relatively rare, there have been reports of *Saccharomyces cerevisiae boulardii* positive fungaemia found in patients taking probiotics.²²⁴

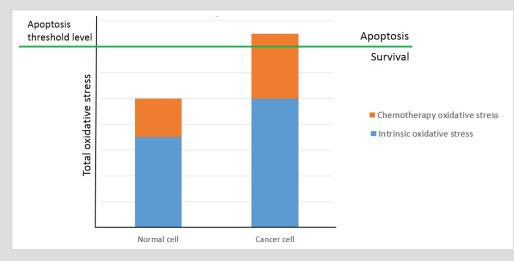
Taking all of this into account, a conservative safety approach is detailed in Table 8.

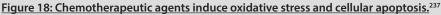
Table 8: Probiotic safety considerations.

Neutrophil Count	Probiotic Safety Considerations	
Normal neutrophil count	Strain specific, quality probiotics generally regarded as safe.	
2,500 to 6,000	Consider <i>Strain Specific Probiotics for Gut Microbiota Restoration and Support</i> post cancer therapy to rebuild.	
	Avoid probiotics if undergoing haematopoietic stem cell transplants.	
Low neutrophil count 500 to 2,500	Consider strain specific, quality probiotics with considerable safety profile, such as <i>Double Strength, Researched, Authentic LGG®</i> .	
	Avoid use of <i>S. boulardii.</i>	
	Avoid probiotics if undergoing haematopoietic stem cell transplants.	
Neutropaenia	Avoid probiotic use until neutropaenia is resolved.	
<500		

Box 3: The Antioxidant Controversy

Few topics generate as much controversy as the use of supplemental antioxidants (AO) in cancer. Contention arises due to questions surrounding safety, efficacy and more prominently the therapeutic co-administration of AO with chemoand radiotherapy. While a plethora of research exists both for and against the use of AO in cancer, unfortunately, no definitive guidelines exist.


Over the years, results from various human clinical trials suggest that AO may, at times, contribute to, rather than impede tumour progression. The research often used to support this refers to the ATBC (Alpha-Tocopherol, Beta-Carotene Cancer Prevention) study on the deleterious impact of beta-carotene (20 mg/d) on tumour progression in male smokers.^{225,226} This study generated numerous conversations, leading to the questioning of the study design, outcomes and biomechanics of nutritionals, all of which contributed to further exploration. A few years later, more than 18,000 smokers, former smokers and workers previously exposed to asbestos were recruited for the CARET. The trial once again investigated the effect of beta-carotene supplementation on lung cancer incidence.²²⁷ Alarmingly, this trial was discontinued 21 months early due to an increase in the risk of both lung cancer diagnosis and mortality.²²⁸


Results from the above studies appear to support the discontinuation of AO supplementation in cancer. However, upon assessing all of the data, it appears that this may only be true in specific circumstances, such as in patients exposed to cigarette smoke. Whereas the same nutrient in an otherwise healthy individual may offer cellular protection.²²⁹ For instance a number of epidemiological studies such as the Physician Health Study, the Linxian trial, and a pooled analysis of seven epidemiological cohort studies have reported associations of increased AO plasma levels with decreased cancer risk.²³⁰

Thus, the benefit of supplemental AO for the prevention of cancer may depend on patients' exposure, hinting at the complexity of this topic. When it comes supplemental AO in patients who have already developed cancer, and who are undergoing cancer therapy, the issue appears even more nuanced.

Estimations note that up to 81% of cancer patients take some form of vitamin and/or mineral supplement,²³¹ perhaps seeking the protection that antioxidants ostensibly offer from oxidative stress. However, the generation of oxidative stress, DNA damage and subsequent cellular apoptosis is exactly how some chemo- and radiotherapy exert their effect (Figure 18).²³² This is desirable if this damage occurs in a cancer cell. Unfortunately, ROS are not selective, and normal cells

succumb to collateral damage. Furthermore, as discussed on page 13 anticancer drugs often cause a variety of adverse effects, and induction of ROS has been reported as one of the contributing factors.²³³ While it may seem prudent to utilise AO to mitigate damage to healthy cells and reduce side effects, it is important to note that most anticancer treatments have a narrow therapeutic index, therefore even a modest decrease in ROS may diminish tumour eradication.^{234,235,236}

To date there are only a handful of randomised controlled trials using AO supplements during radiation therapy.²³⁸ This research supports the notion that the effectiveness of radiation is decreased with the simultaneous use of AO.²³⁹ This seems to be especially true for patients undergoing radiotherapy for head and neck cancer; while antioxidants may mitigate side effects, such as mucositis, overall survival was compromised.^{240,241} Consequently, recommendations remain firm that high dose antioxidant supplementation, over and above the recommended daily intake (RDI), should be avoided during radiation therapy, especially in patients with head and neck cancer.^{242,243}

Please see page 43, to discover how photobiomodulation could offer safe and effective relief from side effects associated with chemo- and radiotherapy in patients with head and neck cancer. Research on antioxidant use alongside chemotherapy is more positive. In 2018, a research review published the outcomes of 174 peer-reviewed original articles, comprised of 93 clinical trials investigating the use of AO alongside chemotherapy.²⁴⁴ This review concluded that, AO supplementation during chemotherapy offers higher therapeutic efficiency and increased survival times in patients.²⁴⁵ Furthermore, research has indicated that the co-administration of certain antioxidants with chemotherapy drugs may assist in mitigating side effects.^{246,247,248} For example, a small human clinical trial found that 53% of patients reported that alpha-lipoic acid effectively reduced the severity of oxaliplatin-related peripheral sensory neuropathy.²⁴⁹

Fork in the Road

Despite recent intensive research on dietary AO supplementation during cancer therapy, dispute still exists and this remains an area which requires more investigation. While it is recommended that antioxidants are avoided alongside radiotherapy, especially in patients undergoing radiotherapy for head and neck cancer, recommendations for patients on chemotherapy remain less clear. Therefore, Practitioners should use their discretion when it comes to the supplementation of AO in these patients. A safe, albeit conservative approach, can be taken with the provision of antioxidants through a whole-food diet.²⁵⁰ The Wellness Diet provides the framework to optimise nutrient intake, assisting patients in meeting the RDI of nutrients for optimal health and healing. For more information on how diet can be utilised during cancer therapy, please see page 32. Fortunately, as discussed above, there is much that can be achieved using safe and effective ingredients, alongside cancer treatment to reduce side effects and improve patient outcomes.

For information regarding the use of intravenous vitamin C, which has a vitally different mechanism of action to oral AO supplementation, please see page 47.

Deregulated Cellular Energetics

In 1931 Nobel Prize laureate Otto Warburg suggested, controversially, that cancer may be a metabolic disease. Warburg observed that cancer cells displayed impaired cellular respiration. He proposed that even in an oxygen replete environment, cancer cells alter their metabolism, increasing glucose uptake, up-regulating glycolysis and fermenting large amounts of glucose into lactate. This process, now known as aerobic glycolysis, was later termed the Warburg effect.^{251,252,253,254,255} More recently, Thomas Seyfried and others have continued the debate that cancer is a metabolic disease, questioning whether altered cellular metabolism precedes cancer development or, whether it is a consequence of the disease process itself.²⁵⁶ Indeed, almost 100 years later, deregulated cellular energetics is recognised as an emerging hallmark of cancer.^{257,258}

Aerobic Glycolysis: The Warburg Effect

It has been well-established that in the presence of oxygen normal cells produce energy to carry out cellular processes via oxidative phosphorylation. When glucose is consumed it enters the cytosol and is converted to pyruvate via glycolysis. Pyruvate then enters the mitochondrial pathway of oxidative phosphorylation under aerobic conditions, yielding roughly 36 units of adenosine triphosphate (ATP), the cellular energy currency.²⁵⁹ When oxygen is scarce, normal cells rely on anaerobic glycolysis rather than oxidative phosphorylation for their energy supply.²⁶⁰ Anaerobic glycolysis is a less energy efficient pathway, yielding only two ATP. However, when it comes to the metabolism of cancer cells, their cellular processes are deregulated, and they behave very differently to healthy cells, giving them a specific metabolic signature. Even in an oxygen replete environment, cancer cells preferentially utilise glycolysis, converting glucose into pyruvate, but rather than entering the mitochondria for oxidative phosphorylation, more than 85% of pyruvate is shunted towards increased lactate production (Figure 19).²⁶¹

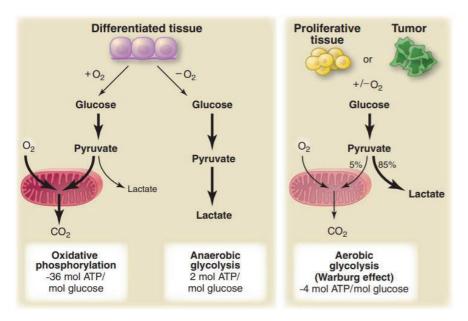


Figure 19: Schematic representation of the differences between oxidative phosphorylation, anaerobic glycolysis, and aerobic glycolysis (the Warburg effect).²⁶²

To compensate for the reduction in ATP production, cancer cells increase their uptake of glucose via the over-expression of glucose transporters such as GLUT-1 to meet their demands of rapid growth, proliferation and survival.^{263,264} While mitochondrial capacity is reduced, some mitochondria remain functional, with oxidative phosphorylation continuing to some extent inside the cancer cell.²⁶⁵

Due to the altered metabolism during aerobic glycolysis, intracellular levels of both lactate and reactive oxygen species (ROS) increase, which has the potential to cause cellular damage and cell death. Interestingly, cancer cells have a dual approach to managing both the increase in ROS and lactate that can promote cancer cell survival and progression. Firstly, cancer cells have the ability to increase glutathione levels as part of their antioxidant defence mechanism, with lactate playing a key role in redox balance.²⁶⁶ Secondly, the increase in lactate is used for manufacturing of nucleotides, amino acids and lipids, providing the essential building blocks for cell division, proliferation and the creation of daughter cells.^{267,268}

Interestingly, cancer cells' addiction to glucose consumption has been put to good use in a clinical setting, with position emission tomography scans detecting glucose uptake in 80% to 90% of solid tumours.^{269,270}

The Role of Lactate in the Tumour Microenvironment

While the Warburg effect plays a central role in cancer cell metabolism, the TME may provide a dual metabolic benefit, allowing cancer cells to both survive and evade detection.²⁷¹ As mentioned above, there are several steps involved in the metabolism of glucose to lactate within a cancer cell, these include:

- 1. Increased glucose uptake via the amplified expression of glucose transporters like GLUT-1 for the biosynthesis of macromolecules such as amino acids, nucleotides and fatty acids for the formation of daughter cells;
- 2. Increased glycolytic enzyme expression and activity;
- 3. Decreased mitochondrial function, diverting pyruvate away from the tricarboxylic acid (TCA) cycle and into the production of lactate; and
- 4. Increased lactate production within the cytosol, accumulation and finally the release of lactate into the TME.²⁷²

Lactate continues to have an effect beyond the confines of the cancer cell, and is an important factor in carcinogenesis.²⁷³ Lactate release and subsequent uptake through monocarboxylate transporters (MCT1 and MTC4), into the TME has been suggested to drive angiogenesis and tumour growth.²⁷⁴

The export of lactate out of the cytosol into the TME triggers a cascade of events.^{275,276} To start with, lactate increases local acidity which stimulates vascular endothelial growth factor (VEGF), triggering angiogenesis and promoting proliferation and migration of cancer cells.²⁷⁷ Lowering the pH also has the ability to decrease T cell activity and alter cytokine release, helping to reduce immune detection.^{278,279}

Beyond lactate there are other metabolic processes which provide substrates for the continued growth of cancer. Below we explore how metabolic coupling displayed in the reverse Warburg effect can provide an additional metabolic advantage.

The Reverse Warburg Effect

First postulated by Pavlides et al. in 2009,²⁸⁰ the reverse Warburg effect is a phenomena where aerobic glycolysis is switched on in non-cancerous stromal cells within the TME. This allows cancer cells to metabolically couple with neighbouring stroma cells, meaning cancer cells are able to source additional fuel from the surrounding environment. Cancer cells initiate this process through the release of ROS, corrupting neighbouring stroma cells and inducing oxidative stress.²⁸¹ Stroma cells, in particular cancer associated fibroblasts (CAF), essentially become manufacturing plants of nutrient dense by-products such as lactate,²⁸² which are then shuttled back into the cancer cell via MCT1 to drive further growth of the tumour.^{283,284,285,286} Upon re-entering the cancer cell, lactate is converted to pyruvate, up-regulating oxidative phosphorylation to meet energy demands, providing further metabolic benefit.²⁸⁷

All Roads Lead to Rome

Interestingly, the Warburg effect is not consistent across all cancer types. One of the fascinating aspects of cancer cell metabolism is the ability to metabolically rewire fuel sources to continue survival. Regardless of the fuel source, all roads lead to Rome, with all nutrients, glucose, glutamine or lipids, being used to increase biomass for cell division and proliferation and the production of daughter cells.

Two Modes of Metabolism for Growth: Nutrient Uptake and Nutrient Scavenging

Cancer cells use two modes of metabolism to acquire cellular building blocks to sustain growth. The first is nutrient uptake, usually involving glucose and glutamine, resulting in de novo synthesis of amino acids, fatty acids and nucleotides for growth.²⁸⁸ The second is nutrient scavenging. As cancer cells grow and proliferate they begin their process of evading detection, migrating away from blood vessels, nutrient supply and oxygen supply, entering into a nutrient-poor and hypoxic microenvironment.²⁸⁹ In this scenario, nutrient scavenging occurs, with cancer cells accessing the required nutrients through macropinocytosis, where the cancer cells engulf extracellular material to source the proteins and lipids they require.²⁹⁰

The Glutamine Addiction

One of the main amino acids that feeds cancer is glutamine. Certain cancers are addicted to glutamine, and will source it from multiple avenues to feed their hunger. Glutamine is used primarily as a fuel for the biosynthesis of amino acids, nucleotides and fatty acids to generate new daughter cells, as well as being a source of ATP production.²⁹¹ Interestingly, glutamine also plays an important role in glutathione production and the redox status of a cancer cell.²⁹²

Glutamine demand can exceed the supply required for periods of rapid growth in cancer. It can be obtained via several pathways to drive growth in the TME, including:

- Macropinocytosis of skeletal muscle;
- Secretion of glutamine by adipocytes; or
- CAF that take up glutamate the cancer cells excrete and convert it back into free glutamine.²⁹³

Regardless of the source, the aim is to support the rapidly proliferation cells.

Box 4: Can We Supplement with Glutamine?

While we are generally aware of the beneficial role that glutamine has in the human body, we have also learnt that it can be used as a fuel source for cancer cells through complex biochemical pathways, driving cancer growth and progression. This raises the question, if cancer cells utilise glutamine to fuel growth, can we safely supplement cancer patients with glutamine?

As we know, cancer metabolism is complex, and our current understanding of cancer cell metabolism is still evolving. Cancer cells have the ability to access the glutamine they require through multiple avenues, including the breakdown of skeletal muscle when demand outweighs supply. However, research has shown that glutamine supplementation can be beneficial for cancer patients, countering some of the complications that can arise from cancer therapy such as oral mucositis (OM), reducing gastrointestinal side effects and improving cancer induced peripheral neuropathy (CINP).^{294,295,296} Furthermore, glutamine plays an important role in immune function, which is required to help the body fight back against cancer.²⁹⁷

Two systematic reviews have investigated the benefits of glutamine supplementation for cancer patients. The first assessed glutamine intake for patients with colon and colorectal cancer, and found that glutamine was beneficial in reducing gut mucositis, improved wound healing after surgery, and helped to manage other gastrointestinal side effects from chemotherapy such as diarrhoea.²⁹⁸ A second systematic review found in favour of oral glutamine supplementation in adults undergoing chemo and/or radiotherapy for reducing the incidence and severity of mucositis as well as weight loss, with 30 g/d of glutamine given up to seven days before treatment.²⁹⁹ Preliminary research has also been conducted showing benefit for oral glutamine in reducing CIPN symptoms in those on oxaliplatin or high-dose paclitaxel.³⁰⁰

In addition to the use of oral glutamine in practice, whey protein is commonly used as a supplement in cancer patients. Whilst there are some concerns around its potential to increase systemic glutathione, *in vitro* and *in vivo* research demonstrates potential anti-cancer effects, helping to prevent muscle wasting, providing a cost effective therapy.³⁰¹

Overall, both glutamine and whey protein supplementation may be beneficial for cancer patients, reducing some of the side effects of cancer therapy and supporting immune function and recovery.

Fats as a Fuel Source

Fatty acids are also an essential component for cellular proliferation, and can be synthesised in several different ways, through:

- De novo synthesis, producing non-essential fatty acids from the primary nutrients glucose and glutamine;
- · Cholesterol and the transfer of free fatty acids into a cell; or
- Using acetate as a substrate for fatty acid synthesis.

Melanoma is a typical example of a form of cancer which utilises fats to fuel its growth.³⁰²

Metabolic Switching

Research is discovering that certain cancer cells have a preference for either glucose, glutamine or fat as their primary fuel source, but some cancers can metabolically switch preference, depending on the type and stage of cancer.

An example of this was observed in a recent clinical trial conducted on patients with acute myeloid leukaemia. Researchers were able to demonstrate that leukaemia stem cells (LSC) displayed a preference for amino acid uptake for survival, but that their metabolic

preference may change after relapse to favour fatty acid metabolism.³⁰³ This study highlights the ability of cancer cells to switch metabolism and display metabolic flexibility even with cancer progression.

Box 5: Live By The Sword, Die By The Sword

Interestingly, in addition to changes in energy metabolism, cancer cells also appear to alter the balance between oxidative stress and endogenous AO protection in order to favour cell survival. It is well-established that cancer cells exhibit higher levels of oxidative stress during all stages of malignancy. In fact, cancer cells rely on the signalling capabilities of ROS for cell migration, proliferation, and survival.^{304,305} Therefore, it is critical for cancer cells to maintain an optimal level of ROS to facilitate tumour progression.^{306,307} On the other hand, cancer stem cells (CSC), small subpopulations of surviving primary cancer cells, have another trick up their sleeves. They exhibit increased expression of AO enzymes such as superoxide dismutase, catalase and glutathione S-transferases, offsetting ROS induced cellular damage. Ultimately this results in a highly drug resistant population of cancer cells.³⁰⁸

What Should a Cancer Patient Eat?

You only have to google the 'best form of diet for cancer' to be taken down a rabbit warren of multiple dietary recommendations. Current dietary guidelines provided for cancer patients by The Cancer Council of Australia recommend eating a healthy balanced diet, consuming small meals more frequently, with a possible increase in calories and protein over time.³⁰⁹ For further advice, patients are then directed to their doctor or dietitian.³¹⁰

Emerging research is now suggesting that what a cancer patient consumes could become part of their cancer therapy. It makes sense that if cancer fuel sources are restricted, there is the possibility that metabolic pathways that drive tumour growth and progression may be hindered. To investigate the impact of diet on cancer, the following section will discuss the current level of evidence for three popular dietary groups: ketogenic diets, vegan/plant-based diets and fasting.

Ketogenic Diets Attempting to Kick Cancer to the Curb

Ketogenic diets (KD) have been used as a therapy for chronic diseases for over a century. In the 1920s, KD were recommended for the management of epilepsy.³¹¹ More recently, KD have been investigated for their impact on cellular metabolism and potential anti-tumour effect.³¹²

A KD is defined as a diet high in fat and low in carbohydrates, with low to moderate levels of protein. Containing in some cases up to 90% fat, this diet is designed to drive cells to utilise fats as their primary energy source, shifting metabolism away from aerobic glycolysis.³¹³ As a result, there is a rise in serum ketone bodies, which cancer cells find difficult to metabolise, further restricting their fuel source.³¹⁴

Research suggests that KD are a potentially safe therapy for cancer patients,³¹⁵ offering multiple benefits, including:

- Targeting the metabolism of cancer cells;
- Mimicking the metabolic alterations seen with fasting;
- Lowering the availability of glucose; and
- Increasing ROS,³¹⁶ which has the ability to affect the TME.

Although KD are one of the first diets that come to mind in connection to cancer management, there have been concerns around recommending them alongside chemotherapy due to a lack of human clinical trials.³¹⁷ To alleviate some of these concerns, a 2020 systematic review investigated the use of ketogenic diets in oncology.

A total of 12 papers reviewing 13 clinical studies were included in the review, two of which were randomised controlled trials.³¹⁸ The studies investigated the use of KD in a range of cancers including high-grade gliomas, and gastrointestinal and gynaecological cancers.³¹⁹ A table including the specific type of cancer, details on the intervention and outcome can be found in Appendix 2. The overall finding was a beneficial effect on body composition, with KD leading to the maintenance of skeletal muscle mass in both overweight and frail individuals.³²⁰ In addition, four studies found KD had a beneficial effect on overall survival and/or progression free survival in cancer patients.³²¹

Research into the benefits of KD on cancer have been spearheaded by Professor Thomas Seyfried, who has investigated their impacts on high-grade gliomas.^{322,323,324} Through his research, he has developed a novel form of therapy known as the 'Press/Pulse Theory'.³²⁵ The 'Press' component involves the use of a restrictive KD throughout cancer treatment, whilst the 'Pulse' component is the use of cancer therapy drugs along with hyperbaric oxygen therapy. This approach is designed to stimulate multiple metabolic signalling pathways, targeting the elimination of cancer cells while maintaining optimal function of healthy cells.³²⁶

Overall, while human studies examining KD in cancer are encouraging, larger randomised clinical trials need to be conducted before firm clinical recommendations can be made.

A Plant-Based Diet Does It Again

It has long been thought that plant-based diets convey a protective effect against cancer.³²⁷ Vegan diets in particular have been investigated for their benefits on reducing cancer incidence, with specific research in the area of prostate³²⁸ and colorectal cancers.³²⁹ To be specific, research has suggested that plant-based diets have the ability to alter cellular metabolic processes, down-regulating carbohydrate metabolism,³³⁰ lowering glucose levels³³¹ and activating insulin-like growth factor (IGF)-1.^{332,333,334}

More recently, consuming a vegan diet has been shown to significantly lower the incidence of total cancer,³³⁵ with large population studies suggesting it could reduce the incidence by up to 19% compared to an omnivorous diet.³³⁶

In 2008, a landmark paper by plant-based researcher Dean Ornish suggested that simple diet and lifestyle modifications were powerful enough to alter gene expression, hinder tumourigenesis and the TME, and therefore cancer progression.³³⁷

The GEMINAL (Gene Expression Modulation by Intervention with Nutrition and Lifestyle) pilot study by Ornish investigated the impact of diet and lifestyle modification, specifically a plant-based diet, on prostate cancer.³³⁸ Thirty male participants were placed on a lowfat, wholefood, plant-based diet and were asked to participate in moderate exercise and stress management techniques as well as a psychological support group for three months.³³⁹ Prostate needle biopsies were taken at baseline and at the end of the intervention to compare ribonucleic acid (RNA) samples before and after.³⁴⁰ When samples were compared, researchers discovered that pathways involved in tumourigenesis and protein metabolism were significantly modified, with the up-regulation of 48 and down-regulation of 453 transcripts after the intervention.³⁴¹ Interestingly, on further examination, they found that certain pathways regulating cellular metabolism were also down-regulated, in particular down-regulation of IGF gene pathways such as IGF-1 receptor as well as genes relating to fat and carbohydrate metabolism.³⁴² This pilot study revealed the impact that a plant-based diet, alongside specific lifestyle interventions, can have on prostate gene expression, cancer cell metabolism and the TME.³⁴³

As aforementioned, plant-based diets have been associated with a lower incidence of colorectal cancer. Researchers have indicated the increased consumption of plant-based, wholefood and a decrease in red meat consumption may be, in part, responsible for this observation.³⁴⁴ Not surprisingly, concerns have been raised regarding consumption of animal products and processed meat in relation to cancer. Recent research has examined this association, with a particular focus on the role of methionine.

Absolute Methionine Dependency

In humans, methionine is an essential amino acid, commonly found in animal products, particularly red meat and eggs, whilst the lowest source is found in plant-based proteins such as legumes and nuts.³⁴⁵ Hence, vegan/plant-based diets are naturally lower in methionine.³⁴⁶

Dietary methionine exerts a range of metabolic functions throughout life, displaying a dose dependant effect on health depending on the age of the individual.³⁴⁷ Methionine is necessary for normal development during the first 1000 days from birth and beyond into adolescence.³⁴⁸ As adults, the requirement for higher levels are no longer needed, and in contrast, dietary methionine restriction (MR) is associated with health benefits such as extending lifespan, preventing obesity, improving metabolic health and inhibiting tumour growth (Figure 20).³⁴⁹

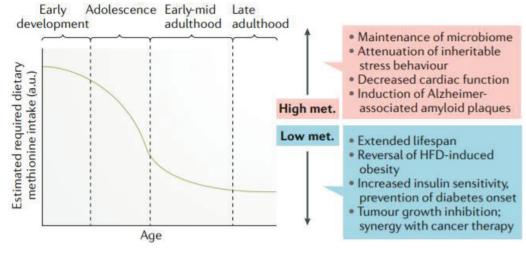


Figure 20: Dietary methionine intake has age-dependent effects on health.³⁵⁰

In April 1974, a landmark *in vitro* study was published which showed for the first time that when methionine is removed from the growth medium, normal cells continue to grow whilst cancer cells die.³⁵¹ This study was one of the first of its kind, demonstrating that many cancer cells display an 'absolute methionine dependency.'³⁵²

Methionine is involved in a range of cellular metabolic functions.³⁵³ These include one-carbon metabolism, maintaining the redox balance and status intracellularly, as well as the synthesis of nucleotides,³⁵⁴ all of which are important factors in cancer development and progression. As such, the idea of cancer cells being methionine dependent, along with the potential anti-tumour effects of MR piqued researchers' interest, questioning whether restricting cellular uptake through diet or blocking uptake through medication could lead to a new form of cancer management. Animal models and a small selection of human trials have investigated whether restricting methionine intake influences cancer growth, and if a MR diet is safe in those with cancer.

A pre-clinical trial was conducted to investigate the anti-tumour activity of MR with breast cancer.³⁵⁵ Researchers suggested that through 'metabolic priming', a process of utilising a MR diet prior to cancer therapy, would essentially prime the cancer cells rendering them more susceptible to the cytotoxic effect of the drugs.³⁵⁶ In an *in vivo* setting, metastatic triple-negative breast cancer (TNBC) cells were transferred to mice to test this theory.³⁵⁷ Researchers compared the impact of a MR diet, a TNF-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2) agonist lexatumumab or a combination of the two on tumour growth and progression.³⁵⁸ Results showed that while MR and lexatumumab alone had little impact on inhibiting tumour growth, the combination of the two was able to suppress both the initial tumour and the subsequent lung metastasis.³⁵⁹ It was suggested that MR metabolically primed TNBC, allowing increased expression of TRAIL-R2 receptors, rendering them more susceptible to the TRAIL-R2 agonist.³⁶⁰

Further, small trials with MR diets in humans have also shown promise. For example, eight patients with varying metastatic solid tumours were placed on a MR diet (2 mg of methionine/kg/d) for up to 39 weeks.³⁶¹ Results showed that plasma levels of methionine fell within two weeks, with the trial determining MR diets to be safe in this small group.³⁶²

Although MR is a fascinating area of research, and our understanding of the benefits of MR is advancing, more research in human clinical trials need to be conducted to further determine efficacy and clinical guidelines.

When the Going Gets Tough, the Tough Get Fasting

When cells are deprived of nutrients, as is the case during short-term fasting (STF), certain cellular metabolic pathways involved in growth are halted, and energy diverted into repairing processes.³⁶³ As a result, STF has the ability to lower glucose, IGF-1 and insulin, whilst activating autophagy. In healthy cells, fasting activates a process known as differential stress resistance, whereby this lowering/ down-regulation activates stress resistance genes in the bid to protect the cell from the impact of chemotherapy.^{364,365} For cancer cells though, this down-regulation leads to a reduction in fuel supply, leading to an increase in ROS intracellularly, ultimately leading to cell death.^{366,367} STF prior to chemotherapy and/or radiotherapy may reduce DNA damage and protect healthy cells from the impact of oxidative stress, reducing the toxicity of cancer therapy, and increasing treatment efficacy with reduced side effects for cancer patients.³⁶⁸

Whilst the idea of long-term fasting can be a difficult concept for most to consider, STF is more achievable, which improves patient compliance.³⁶⁹ The fasting mimicking diet (FMD) is a form of STF that is being proposed as a clinical version of fasting to be employed

alongside chemotherapy cycles.³⁷⁰ The FMD lasts between one to five days in total³⁷¹ and consists of a very low-calorie diet (300 to 1000 calories per day), and includes tailored soups, teas, juices, nut bars and specific supplements to reduce the risk of nutritional deficiencies.³⁷²

Animal models and human trials are now revealing the clinical benefits of STF/FMD, and demonstrating how short cycles of lowcalorie fasting can be safe and effective when used in conjunction with cancer therapy.^{373,374,375} A case report reviewed patients with varying forms of cancers (breast, prostate, ovarian, uterine, non-small cell carcinoma of the lungs, and oesophageal adenocarcinoma) who voluntarily fasted between 48 to 140 hours prior to and 5 to 56 hours during chemotherapy.³⁷⁶ Clinically significant reductions in fatigue and weakness were seen in those who underwent chemotherapy and fasting.³⁷⁷ In addition, vomiting and diarrhoea were also reduced in those that fasted, with only minor side effects of hunger and light-headedness being reported.³⁷⁸

Following this, a randomised controlled pilot study confirmed the above findings. Thirty-four cancer patients were recruited and randomised to complete STF in the first half of their chemotherapy, followed by a normal diet, whilst the second group followed a normal diet switching to a STF diet in the second half of their treatment.³⁷⁹ The fasting period was 36 hours before chemotherapy and 24 hours post chemotherapy.³⁸⁰ Results showed that STF was able to improve QOL markers and reduced fatigue.³⁸¹

It must be noted that although animal models of fasting show promise, human trials are limited for the use of the FMD in oncology, and according to leading researchers in the area, more trials need to be conducted to provide firm evidence for clinical recommendations. With this in mind, several clinical trials on FMD and cancer are currently underway.³⁸²

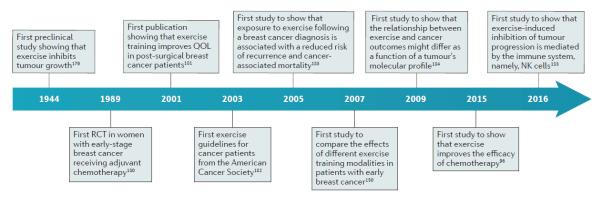
It's a Non-Sandwich Related Wrap

When it comes to cellular metabolism and cancer, it is important to remember that while many cancer cells utilise glucose as a primary fuel for aerobic glycolysis, this is not the case for every type of cancer. It is important, therefore, to be informed about the type and stage of cancer your patient presents with, and then conduct research to obtain a better understanding of its metabolism, which can help you decide on the best dietary measures for your patient.

While the ketogenic, vegan/plant-based and fasting-mimicking/STF diets show promise for targeting a range of metabolic pathways, when we consider the current guidelines from the Cancer Council of Australia, we can confidently recommend a wholefood diet high in plant-based foods, with moderate levels of protein as our first line recommendation for cancer patients. The Metagenics Wellness Diet offers clear guidelines on a healthy eating plan that can be downloaded from the Metagenics website, www.metagenics.com.au or www.metagenics.co.nz.

Further to dietary recommendations, non-dietary solutions to target metabolic pathways can also be considered. Jane McLelland, author of *How to Starve Cancer* has also integrated herbs, nutrients and off-label medications that can alter metabolic pathways, with top recommendations for natural ingredients including berberine, quercetin, chromium, epigallocatechin gallate (EGCG), curcumin and resveratrol.³⁸³ One of the highlights of these recommendations is the use of berberine which appears to impact all major fuel sources that feed cancer: glucose, glutamine and fat. Research on berberine is promising, with animal studies indicating it may help to target many roads that impact cancer cell metabolism. Some potential actions that have been noted include berberine's anti-inflammatory affect, inhibiting proliferation and metastasis, inducing autophagy and apoptosis.^{384,385,386,387,388,389,390}

Box 6: Nutritional Resuscitation and Recovery


Whilst sophisticated cancer therapies are saving more lives, many cancers become chronic diseases. As the side effects of surgery, radiation and chemotherapy frequently results in malnutrition and metabolic derangements, many cancer patients need to recover from prolonged inadequate nutrient intake. Subsequently, chronic inflammation and loss of muscle mass (cachexia), negatively affects QOL, physical function and treatment tolerance.³⁹¹

For patients recovering from cancer and its treatments, supplementing the diet with nutrient-dense smoothies can be particularly helpful. For example, blending *Undenatured Whey Protein Isolate* with *High Absorption Multi Mineral with Apple Cider Vinegar* effectively delivers pure essential amino acids for anabolic muscle growth, with bioavailable minerals to provide the basic nutrients for immune system function, musculoskeletal strength and metabolic health.

Cancer and Exercise

Years of research have highlighted the benefits of exercise for cancer patients (Figure 21).³⁹² This accumulation of data has shown that exercise targets and improves almost every conceivable outcome from reducing cancer incidence,³⁹³ to inhibiting tumour growth,³⁹⁴ alleviating cancer-related adverse events,³⁹⁵ improving anti-cancer treatment efficacy,³⁹⁶ lowering the risk of recurrence,³⁹⁷ and improving QOL in patients.³⁹⁸ Moreover, exercise has been proven to be safe, feasible, and effective, even in the most fragile and advanced-stage cancer patient.³⁹⁹

Figure 21: Highlights of research examining the effects of exercise in cancer.⁴⁰⁰

More than 100 clinical exercise intervention studies have shown that exercise-induced alterations in the systemic environment influence key regulatory mechanisms in the TME, from angiogenesis to immune regulation and metabolism.⁴⁰¹ During exercise, the rise in heart rate and blood pressure drives blood circulation, which increases tumour perfusion and has an impact upon the health of the TME due to increased angiogenesis and intratumoural vascularisation, reducing tumour hypoxia (Figure 22).^{402,403} This may at first seem to be an undesirable consequence, however, improving oxygen and blood flow to the TME, has the beneficial effect of improving treatment efficiency and recovery.

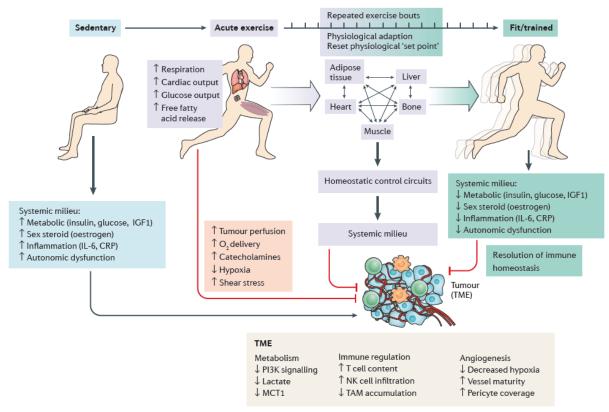


Figure 22: Exercise regulation of the TME.⁴⁰⁴

During exercise, enhanced blood perfusion and temperature increases improve drug delivery within the TME.⁴⁰⁵ The increased integrity and structure of the vascular system within the TME supports the delivery of chemo- and radiotherapy – treatments that work to reduce tumour cell volume via the generation of reactive oxidative species to exert their therapeutic effect.⁴⁰⁶ Furthermore, due to the beneficial effect of exercise on the health of cells overall, commonly reported side effects are significantly reduced, with patients often reporting improved tolerance and better recovery from treatment.^{407,408}

Presently, exercise plays a strikingly limited role in clinical oncology. This might be due to a lack of recognition of the positive effects of exercise on cancer.⁴⁰⁹ However, considering the research, exercise may be recommended to patients as a targeted approach to regulate cancer progression and formation, as well as ameliorate cancer-associated adverse events, and improve treatment efficacy.³¹⁰ Table 9 outlines evidence based exercise recommendations to address specific cancer patients concerns.

Exercise Recommendations for Cancer Patients 30 minutes x 5 days (150 min) exercise per week. ⁴¹²				
Specific Side Effect	Exercise			
Anxiety and/or depression	30 to 60 minutes of moderate-intensity exercise 3 times per week for 12 weeks			
Fatigue	30 minutes of moderate-intensity aerobic exercise 3 times per week			
Quality of life	Combined 30 minutes of moderate-intensity exercise plus 2 sets of 12 to15 repetitions of resistance exercise 2 to 3 times per week for at least 12 weeks			
Lymphoedema	A supervised resistance exercise program completed 2 to 3 times per week			
Physical function	30 to 60 minutes of moderate-intensity aerobic exercise, 2 sets of 8 to 12 repetitions of resistance exercises, 3 times per week for 8 to 12 weeks			

Table 9: Exercise recommendation for cancer patients.411

The Importance of a Good Night's Rest

Up to 75% of newly diagnosed or recently treated cancer patients, report experiencing sleep disturbances.⁴¹³ This loss of circadian homeostasis is thought to not only promote cancer development, but also contribute to poor therapeutic outcomes and sadly early mortality.⁴¹⁴

Circadian disruption, specifically night-shift work, may also increase the risk of developing cancer, notably breast cancer.^{415,416} A study in the International Journal of Cancer found a relationship between women's irregular work schedules and the incidence of breast cancer.⁴¹⁷ Researchers compared 1,200 female night-shift workers who had developed breast cancer between 2005 and 2008, with 1,300 women who did not have a cancer diagnosis. They found that the rate of breast cancer was 30% higher for the women who had worked night-shift for approximately four years, with a notable link if the women had been working night-shifts prior to her first pregnancy.⁴¹⁸ Men are not exempt, with published results linking shift work with an increased incidence of prostate cancer.⁴¹⁹ Researchers suspect that this increase in cancer risk is mediated by a disruption in the protective nature of melatonin.^{420,421}

Accumulating research notes that chronic disruption of the circadian rhythm tips the balance between tumour-suppressive and tumour-progressive gene expression to favour tumour growth.⁴²² The underlying mechanisms to date are not yet clear,⁴²³ however several hypotheses have been put forward including: exposure to light during the night eliminating the nocturnal anti-carcinogenic effects of melatonin,⁴²⁴ disturbed functioning of the biological clock genes that control cell proliferation,⁴²⁵ and a weakening of the immune system due to sleep disturbances.⁴²⁶

Improved circadian rhythm on the other hand, has been shown to improve treatment efficacy. Randomised clinical trials including patients undergoing treatment for advanced-stage cancers, including metastatic ovarian, lung, colorectal, and breast cancers using conventional chemotherapeutic drugs has provided evidence that better therapeutic outcomes, including host tolerability, is improved with circadian rhythmicity.⁴²⁷ Utilising Metagenics Circadian Rhythm Reset Protocol can help to support patients sleeping patterns throughout their cancer journey.

Psycho-oncology – a Central Part of Cancer Care

"Psycho-oncology is a cancer treatment. If empirical evidence of the impact of psychological intervention on overall survival is hard to demonstrate, there is ample evidence of its positive effect on quality of life, pain reduction, and cancer treatment side-effect management. For patients it is clearly not about just extending overall survival, but about living well the time that we live with cancer. Psycho-oncology holds a central place in each step of the path from diagnosis to recovery, and for those who like me live with advanced disease, all the way to the terminal phases of cancer."

– Cancer patient Patricia Garcia-Petro, 2013⁴²⁸

The development of psycho-oncology parallels the shift towards improving quality of life and palliative care for cancer patients, as opposed to simply increasing survival and life expectancy.⁴²⁹ Psycho-oncology focuses on enhancing wellbeing and reducing distress, as well as supporting patients to find a sense of meaning in their life. Research demonstrates that patients who experience more meaning in life generally, have better psychological wellbeing and quality of life, with less distress after a cancer diagnosis than those whose life lacks meaning.⁴³⁰

The main areas of psycho-oncologic care include pain, fatigue, sexual issues and fear of cancer progression and/or recurrence. There are many proven strategies to support cancer patients and their carers, including meaning-centered psychotherapy (MCP), positive reframing and coping skills, mindfulness-based meditation and training, as well as relaxation and slow breathing techniques.⁴³¹

"Psycho-oncological care needs to be fully acknowledged as a central part of cancer treatment."

– Cancer patient Patricia Garcia-Petro 2013432

The Cancer Personality Debunked

"Even today the cancer social identity remains highly stigmatised by our society and the discrimination one may experience because of the cancer membership can actually lead to increased levels of stress and damage health even more. In a way, with cancer, it feels like you have to pay your bill twice as you have to deal with the cancer and you have to deal with the stigma of cancer."

– Cancer patient Patricia Garcia-Petro 2013433

The cancer stereotype has been described as a personality with depressed mood, social conformism and controlled expression of needs and emotions.⁴³⁴ This characterisation is not only incorrect but has had the unfortunate impact of marginalising cancer patients, leading many to feel self-guilt and attribute their diagnosis to previous misdemeanours.

Rather, the psychological experiences of cancer patients are usually the consequence rather than the cause of the disease.⁴³⁵ The psychological significance of cancer diagnosis as well as the physiological impact of the disease and its treatments, considerably affect the neuroendocrine and immune systems with potential implications for mental health and behaviour.⁴³⁶

Phase Models Help us Understand What Patients are Going Through

As Practitioners, we may not be able to fully appreciate the distress and turmoil cancer patients face, however, understanding the phases of dealing with a severe and potentially terminal illness can help us to support patients on their emotional journey.

Utilising the work of both Elizabeth Kubler-Ross (five-phase model)⁴³⁷ and Monika Renz (the four stages of maturation),⁴³⁸ Figure 23 outlines the typical phases a cancer patient may go through on their journey with the disease and its treatment, potentially coming to terms with their own mortality.

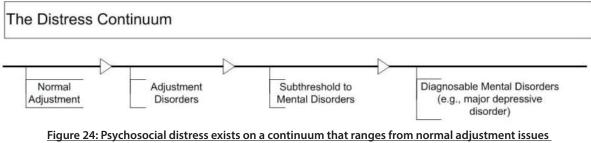
Figure 23: The process of maturation when dealing with illness. 439,440

As this combined model illustrates, the patient may initially experience disbelief along with shock and denial. Then emotions surge as reality sets in, resulting in a vacillation between anger, grief and despair, with many experiencing this rollercoaster cycle of emotions repeatedly. Bargaining is associated with pleading, such as making life transformative changes in the hope it will increase recovery and survival. The next step may be depression, giving up and surrendering to despondency and impotence in relation to the situation, whilst the last phase is associated with transformation, acceptance and letting go. This involves the spiritual dimension and often patients will develop a new mental attitude and even experience 'happiness and wellbeing in the midst of illness.'⁴⁴¹

It is important to acknowledge that not all patients will enter into this process in a linear way. Each patient may go into one or more of these phases at any stage, not necessarily progressively, and the outcomes will vary individually. It is up to us as Practitioners to respect and support the process, wherever our patients may be on their journey.

"How a patient copes with reality and illness altogether makes up the quality of his or her hope""

Adjustment to Cancer: Anxiety and Distress


Difficulties adjusting to cancer diagnosis is a normal response, as would be expected with any type of severe, life threatening and potentially fatal disease. It is therefore not surprising that many individuals with cancer experience a variety of challenging emotional reactions, including anxiety and fear in response to the stress associated with cancer screening, diagnosis, treatment and/ or recurrence.⁴⁴³

Whilst most cancer patients do not exhibit or progress to develop specific mental disorders,⁴⁴⁴ they and their carers will understandably require ample information, guidance and support at every stage of their journey to manage anxiety and related emotions such as fear and dread. The power of informed decision making cannot be overestimated and the role of any healthcare Practitioner is to empower their patients with knowledge for their health and wellbeing.

The Distress Thermometer – Open up Communication

A useful screening tool that has been utilised by oncology nurses and other healthcare professionals in hospital settings is the Distress Thermometer. Whilst not all patients will want or need psycho-oncological interventions, their need for support on other levels including daily practical matters, may go unrecognised and therefore not be adequately understood and met. The Distress Thermometer specifically provides the opportunity for patients to voice their concerns, identify areas where immediate support is needed, and to indicate if further referral to psychosocial services is required.⁴⁴⁵

In the context of cancer, distress has been defined as "a multifactorial unpleasant experience of a psychological (i.e. cognitive, behavioural, emotional), social, spiritual, and/or physical nature that may interfere with the ability to cope effectively with cancer, its physical symptoms and treatment. Distress extends along a continuum (Figure 24), ranging from common normal feelings of vulnerability, sadness and fears to problems that can become disabling, such as depression, anxiety, panic, social isolation, and existential and spiritual crisis."⁴⁴⁶

to syndromes that may result in a diagnosable mental disorder.447

The term 'distress' is preferred when describing the impact of cancer diagnosis on both patients and caregivers alike. 'Distress' carries less stigma for most people than words like anxiety or depression, which may pathologise many normal responses to being diagnosed with cancer.⁴⁴⁸

A copy of the Distress Thermometer is provided in Appendix 3.

It also needs to be acknowledged that the degree of distress may change during different stages of the disease and treatment. As such, using the Distress Thermometer can be a valuable means to 'check in' with your patient, identifying the particular stressors and needs at each stage of their journey.

Stress and Health Risk Behaviours Increase Cancer Risk

The combination of early life stress/trauma, along with chronic ongoing stress, increases the likelihood of health risk behaviours as a coping mechanism. Chronic stress is associated with risky health behaviour such as smoking, physical inactivity, poor diet and sleep deprivation. This in turn may increase the risk of progression and recurrence of cancer. There is a bidirectional relationship between high-risk behaviours such as alcohol and substance abuse with chronic stress and allostatic load, subsequently leading to disease burden.⁴⁴⁹

The Importance of Psychosocial Support

Psychosocial approaches include cognitive behavioural therapy (CBT) techniques, stress management, specific coping strategies, psychotherapy, crisis intervention, couple and family therapy, group therapy, self-help groups and relaxation-based interventions such as meditation, progressive relaxation, guided imagery and hypnosis. Some of these specific techniques are described in more detail below.

CBSM Reduces Breast Cancer Mortality and Recurrence

Cognitive-behavioural stress management (CBSM) interventions for cancer patients not only reduce anxiety and depression but are also associated with reduced leukocyte, proinflammatory and pro-metastatic gene expression in the first year of primary treatment.⁴⁵⁰ Cancer patients who continue CBSM coping techniques and skills report reduced stress symptoms and have longer survival. In turn, there is also reduced pressure on inflammatory and tumour-promoting pathways.⁴⁵¹

In 240 women recovering from surgery and undergoing adjuvant treatments for non-metastatic breast cancer, a 10-week groupbased CBSM program was associated with better emotional and physical wellbeing compared to controls at follow up eleven years later.⁴⁵²

The CBSM program involved 90-minute sessions once per week, utilising techniques such as cognitive reframing, stress evaluation, training on effective coping skills, assertiveness and anger management, as well as encouraging optimum use of social support and relaxation techniques. The overall aim was to reduce stress and support psychological adaptation and coping skills. Women in the control group received a one day psychoeducational self-help seminar and general information about health and breast cancer care. They also received handouts containing abbreviated sections of the CBSM modules but were not otherwise taught these techniques.⁴⁵³

The CBSM intervention was associated with long-term clinical as well as psychological benefits. Further, it reduced the risk of all-cause mortality and prolonged survival compared to controls (Figure 25).⁴⁵⁴

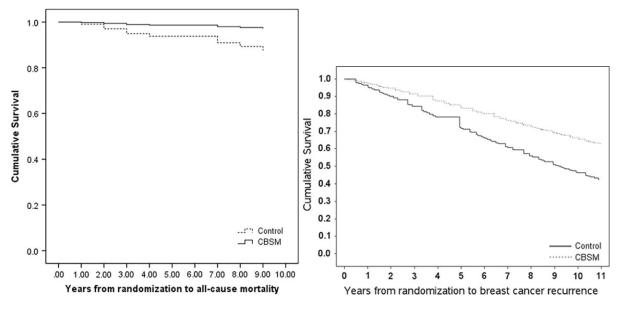


Figure 25: Left - general survival difference and Right - breast cancer specific survival difference between CBSM and control groups.

The Stress and Cancer Connection

The potential impact of chronic stress leads to changes in neuroendocrine function and is associated with increased inflammation and immune dysregulation, which may increase cancer progression and negatively impact QOL and survival. Conversely, the positive impact of stress management, including social support, skills such as CBSM techniques, meditation and relaxation, as well as pharmacologic and/or herbal and nutritional support may serve to modulate these negative impacts and consequently improve QOL and positive health outcomes.⁴⁶⁵

Activation of the sympathetic nervous system (SNS) by stress releases neurotransmitters, which act on β -adrenergic receptors on tumour cells and tumour-associated immune cells to promote metastasis.⁴⁵⁷ Reducing stress improves survival and health outcomes in cancer patients.⁴⁵⁸

A recent Australian study suggests that beta-blockers, commonly used to treat high blood pressure and anxiety, could prevent the spread of cancer cells by reducing the impact of stress. Sixty breast cancer patients who were due to undergo surgery received the beta-blocker propranolol, or placebo, one week prior to their operation. The results demonstrated that the use of beta-blockers down-regulated biomarkers associated with metastatic potential, indicating the likelihood of reducing cancer recurrence.⁴⁵⁹

Beta-blockers are also associated with longer overall survival in ovarian cancer patients. A study conducted to investigate the impact of beta-blockers on clinical outcomes was conducted with 269 women (median age 63 years) with epithelial ovarian, primary peritoneal or fallopian tube cancers, collectively referred to as EOC. These women were either receiving adrenergic beta-1 receptor (ADRB1) selective agents (71.7%) or non-selective beta agonists, primarily prescribed for hypertension as well as arrhythmia and post-myocardial infarction management. The median overall survival (OS) for patients receiving any beta-blocker was 47.8 months compared to 42 months for non-users. For those on non-selective beta-blockers the median OS was 94.9 months compared to 38 months for those receiving ADRB1 selective agents (Figure 26).⁴⁶⁰

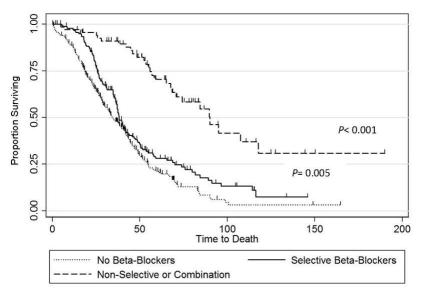


Figure 26: Beta-blockers associated with increased survival in cancer patients.⁴⁶¹

MBSR Alters Cortisol and Immune Patterns in Cancer Patients

"MBSR gave me a new perspective that allowed me to distinguish the thoughts about the cancer situation

from the actual experience in the body"

- Cancer patient Patricia Garcia-Petro, 2013⁴⁶²

A study was conducted to investigate the continuing effects of an eight-week mindfulness based stress reduction program (MBSR) with 49 breast cancer patients and 10 patients with prostate cancer on QOL, symptoms of stress and mood. The MBSR program involved meditation, relaxation, gentle yoga and daily home practice. Immune, endocrine and autonomic nervous system markers, as well as blood pressure (BP) and heart rate (HR) were all monitored at baseline, post-intervention and 6- and 12-month follow up.⁴⁶³

The results demonstrated a reduction in symptoms of stress as well as a decrease in cortisol levels, both of which were sustained in the follow-up period (Figure 27). A decline in inflammatory cytokines and a decrease in both systolic blood pressure (SBP) and HR were also positively correlated with self-reported symptoms of stress.⁴⁶⁴

Figure 27: MBSR lowers symptoms of stress inventory (SOSI [left]) and cortisol (right) in cancer patients.⁴⁶⁵

Pre-Intervention

Post-Intervention 6-month follow-up 12-month follow-up

Pre-Intervention Post-Intervention 6-month follow-up 12-month follow-up

Fear of Cancer Recurrence

Not surprisingly, fear of cancer recurrence (FCR) is cited as one of the most common concerns of cancer survivors and their carers.⁴⁶⁶ The prevalence of FCR can be as high as 70% and is rated as one of the most poorly addressed needs.⁴⁶⁷

CBT can reduce the severity of FCR in cancer survivors with evidence provided in several studies. One of the more well-known interventions is the SWORD study which investigated the efficacy of blended CBT (bCBT) in 88 survivors of breast, prostate and colorectal cancers with high FCR. The bCBT was provided over a three month period and involved five individual one hour face-to-face sessions, and three 15 minute e-consultations with access to a website.

Patients without access to a website received three 15 minute telephone consultations and a workbook with identical content. The intervention utilised techniques such as psycho-education, cognitive restructuring and behavioural modification. The control group received care as usual (CAU).⁴⁶⁸ Approximately one third of the participants receiving bCBT had clinically significant improvement, evaluated as a reduction in FCR severity, while no improvement was noted in the control group.

In another study, the effectiveness of a comprehensive intervention consisting of CBT-based coping strategies and an information manual to manage uncertainty around cancer recurrence was evaluated in 509 breast cancer survivors. The women in the intervention group were taught to recognise their own triggers of uncertainty and utilise coping strategies such as relaxation, distraction and calming self-talk to deal with these. The manual provided a resource to assist with pain, lymphoedema, fatigue and other symptoms. The study found that the 244 women in the intervention group regularly utilised the coping strategies to contend with triggers of fear of breast cancer recurrence and long-term treatment side effects. The majority of women in this group reported these strategies were very helpful.⁴⁶⁹

Support with Natural Medicine

The Mood and Stress Questionnaire (MSQ) is another useful clinical screening tool to elicit levels of stress and identify which herbal and nutritional support is best indicated. This can be downloaded from the Metagenics website at www.metagenics.com.au or www.new.metagenics.co.nz.

Table 10 outlines some general recommendations for specific nervous system support for cancer patients, which may be implemented at any stage during treatment. Whilst many ingredients used to support the nervous system can be safely co-prescribed alongside chemo- and radiotherapy, each patient and their situation will essentially be unique and we recommend prescribing with the support of the patient's oncologist. Table 10 also provides the general cautions and contraindications for the formulas indicated, however for a more detailed exploration of individual ingredients please consult the Technical Data or call the Clinical Support Team on 1800 777 648 (Australia) or 0508 227 733 (New Zealand) or email clinical support@metagenics.com.au.

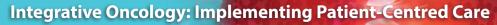

Clinical Indication	Catchphrase	Cautions and Considerations	
Conoral stross management	Meta Mag® Magnesium, Taurine and Glutamine for Stress	Check with a patient's oncologist before recommending a formula containing antioxidants.	
General stress management	Vitamins B5, B6 and C for Stress and Adrenal Health	Seek approval from a patient's oncologist before prescribing folate and a formula containing antioxidants.	
		Check with a patient's oncologist before recommending a formula containing antioxidants.	
Depresssion	BCM-95™ Turmeric and Saffron for Depression	Note: mixed evidence on the effects of curcumin alongside chemotherapy – use with caution and only under the supervision of the patient's oncologist.	
Anxiety	Herbal Support for Hyper HPA and Stress	As kudzu is oestrogenic, avoid use in hormone sensitive/dependant cancers.	
Chemotherapy "brain fog"	Lipid and Tocotrienols for Healthy Cell Membranes and Cognition	Safe to use alongside chemo- and radiotherapy.	
	Choline		
	Bacopa/Gingko Complex		
Metagenics Stress Less Program		Call the Clinical Support Team for specific support.	

Table 10: Nervous system support for cancer patients.

Cancer is understandably a topic of critical and ongoing research, and as such there are many novel and emerging therapies and tools, some more grounded in evidence than others. What follows is a comprehensive update on the state-of-play, which may improve Practitioner awareness of the options available to cancer patients.

Photobiomodulation - Shining the Light on Cancer

Photobiomodulation (PBM) therapy, previously known as low-level laser therapy (LLLT), is the use of red or near-infrared light (NIR) to stimulate healing and repair damage caused by injury or disease.⁴⁷⁰ The therapeutic results of PBM is owed to its actions on the mitochondria, as these energy powerhouses contain photosensitive chromophores, organelles that absorb light. PBM activates the endogenous chromophores by stimulating the mitochondrial enzyme cytochrome oxidase C.⁴⁷¹ This leads to both reduction of oxygen and the disassociation of nitric oxide (NO), thus increasing the mitochondrial membrane potential and ATP synthesis. In turn, this activates signalling pathways to stimulate anti-inflammatory processes, cell metabolism and repair, amongst other healing mechanisms. Figure 28 demonstrates how NIR activates the mitochondria resulting in profound effects on gene expression to promote healing and repair.⁴⁷²

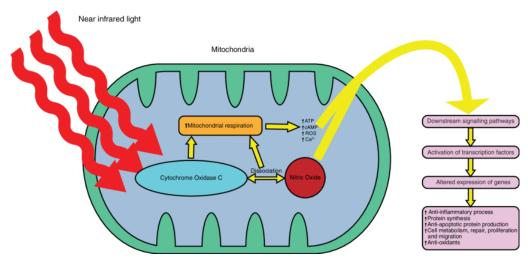


Figure 28: Mechanisms of PBM (near infrared light) on mitochondrial function and gene expression.⁴⁷³

PBM has sound evidence of benefit in cancer patients and is endorsed and accepted by the International Society of Oral Oncology as a primary and standard practice in the prevention and/or treatment of OM,⁴⁷⁴ a common and debilitating side effect of chemo- and radiotherapy for head and neck cancer.

Figure 29 outlines the numerous other side effects of cancer therapy, which could benefit from PBM.

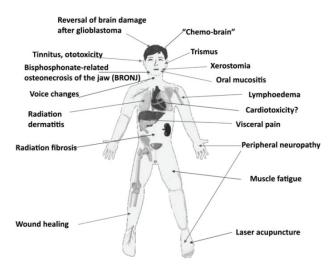


Figure 29: Cancer therapy side effects that could potentially be treated with PBM.⁴⁷⁵

Combining PBM with Cytotoxic Anticancer Therapies

One of the benefits of PBM in cancer is that malignant cells and normal/healthy cells respond very differently to this therapy. In healthy cells, the impact of PBM initially increases ROS which can in turn elicit protective mechanisms and defend healthy tissue from the damaging effects of cancer therapy. In contrast, when cancer cells are exposed to PBM they become more responsive to cytotoxic stimuli and apoptosis is accelerated.⁴⁷⁶

One study demonstrated that PBM improved treatment outcomes and progression-free survival in patients with varying types of head and neck cancers. With the aim of preventing OM during radiotherapy and chemotherapy, PBM was administered to nine points on the oral mucosa five days per week, and continued on average for 45.7 days. The parameters for PBM, based on guidelines recommended by the International Dose Response Society,⁴⁷⁷ were 660 nanometres (Nm), 100 megawatts (mW), 4 J/cm2, and spot size 0.24 cm2.⁴⁷⁸ The patients were followed up for 41 months, with those receiving PBM displaying a statistically significant better complete response to treatment than those in the placebo group, measured as progression-free survival (Figure 30) and a tendency to better overall survival. They also demonstrated lesser incidence of OM, reduced need for opioid medication and less requirement for gastrostomy.⁴⁷⁹ Therefore, PBM offers a safe, effective and low cost treatment.

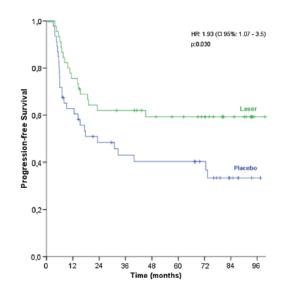


Figure 30: Progression-free survival in patients receiving PBM compared with placebo.480

Photodynamic therapy refers to the administration of PBM alongside cytotoxic or chemotherapeutic agents, an example demonstrated in the above study with patients with head and neck cancer. In another model, PBM was compared alone, and in combination with curcumin, for treatment of OM in cancer patients. Fifty-six patients were assigned to receive either PBM alone or PBM plus photodynamic therapy. In this instance, the photodynamic therapy required patients to rinse with 20 ml of a photosensitising mouthwash containing curcumin, and receive blue LED therapy in their oral cavity for five minutes. Significant reduction in severity of OM was seen in both groups; however, those who received the PBM plus photodynamic therapy had a reduced time to lesion remission from 15 to 11 days compared to those who received PBM alone.⁴⁸¹

Hyperthermia

Hyperthermia, a therapy utilising heat to aid in the treatment against cancer, was first reported on papyrus scrolls around 5000 BC. Today, this ancient therapy is still an important adjunct therapy for many cancer patients.⁴⁸²

Temperatures induced by hyperthermia treatment range from 39 to 45 degrees Celsius and can be delivered via radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles.⁴⁸³ The benefits of hyperthermia for cancer include:

- Reduced cancer cell membrane integrity;
- Increased cancer cell apoptosis; and
- Enhanced immune responses, dependent upon temperature achieved (Figure 31).484

(A) Surface Molecules on Heated Tumor Cells				
 MICA ↑ (after 39.5°C, 6h) MHCI ↑ (after 43°C, 30min) 	NKG2D NKG2DL NKG2DL heated tumor cell			
(B) Heat Shock Proteins				
 heated tumor cells release HSPs HSPs activate NK cells HSPs bind to TLR2 and TLR4 on APCs HSPs transfer potential tumor antigens to APC APCs then cross present antigens to CD8* Telephone 				
(C) Exosomes				
 heated tumor cells release exosomes exosomes transfer potential tumor antigens to APCs then cross present antigens to CD8* To exosomes also contain chemokines 				
(D) Direct Effects on Immune Cells				
• NKG2D ↑ on NK cells (after 39.5°C, 6h) • CD8° T cell activity ↑ (after 39.5°C, 6h) • activate DCs (after 39.5-41°C, 6-24h)				
• activate DCs (alter 59.5-41 C, 6-2411)	CD40 CD86			
(E) Tumor Vasculature				
 improve tumor perfusion (after 42°C, 1h) may increase adhesion molecule expression may facilitate better immune trafficking between 	dLN ICAM-1 etc.			

Figure 31: Effect of hyperthermia on immunity.485

Hyperthermia is classified as either local, regional or whole-body. Local hyperthermia is typically used for solid tumours, regional for a larger area such as a limb, and whole body is applied in the case of widespread metastatic cancer.⁴⁸⁶ Hyperthermia is often combined with chemo- or radiotherapy, having demonstrated to enhance both therapies efficacy.⁴⁸⁷ When local hyperthermia was added to radiotherapy in the treatment of a range of cancers the overall response rate was 54.9% compared with 39.8% in those receiving only radiotherapy.⁴⁸⁸

In the case of metastatic stage IV gastric cancer, a trial identified the combination of whole body hyperthermia with intravenous (IV) intraperitoneal chemotherapy improved outcomes for patients when compared with chemotherapy as a standalone. Results demonstrated:

- Complete and partial remission rate at 61.5% combined therapy vs 23.8% chemotherapy alone;
- Stable disease rate at 19.2% combined therapy vs 28.5% chemotherapy alone;
- Survival rate at one year post treatment was 38.5% for combined therapy vs 19% for chemotherapy alone; and
- Additionally, the combined group experienced improvements in QOL as indicated by their Karnofsky score (measures ability of cancer patients to perform everyday tasks).⁴⁸⁹

However, this therapy is not without its limitations as current challenges include accurately identifying the temperature within the tumour mass. Poor precision, with temperatures too high, can result in the damage of healthy tissue, and a temperature too low can result in inadequate treatment.⁴⁹⁰ Hyperthermia can also have a double edged sword effect on tumour immunity. Although it has been demonstrated to increase the expression of certain heat shock proteins (Hsp) which enhance anti-tumour immunity, it can also increase Hsp which block apoptotic pathways, offering protection to cancer cells. Further, hyperthermia has been shown to have immunosuppressive effects with reduced cytotoxic activity of NK cells and T lymphocytes observed after hyperthermia treatment at 42 degree Celsius. Thus to improve patient outcomes the benefits of this therapy are experienced when combined with other anticancer treatments rather than as a standalone.⁴⁹¹

Hyperbaric Oxygen: an Adjunctive Therapy in Cancer

Best known for its use in pathological conditions with hypoxic or ischaemic states, hyperbaric oxygen (HBO) therapy has also been explored as an adjuvant treatment to enhance the efficacy of chemo- and radiotherapy. HBO assists in reducing tumour hypoxia by increasing the concentration of oxygen in the plasma, and importantly, radiation treatment is found to be most effective in well-oxygenated tumour tissue. The combination of HBO and radiation appears to reduce tumour growth, improve local tumour control and subsequently increase survival time.⁴⁹²

Another safe and effective therapy with rare side effects, HBO has been used prior to and during irradiation, and has been found to improve the effectiveness of this therapy. HBO can also work as a chemotherapy adjuvant by enhancing the efficacy of certain cytostatic drugs such as cisplatin. Again, as with radiation, HBO alongside chemotherapy achieved better results than chemotherapy alone, by rendering tumour cells more sensitive to chemotherapeutic treatments.⁴⁹³

Protective Role of Vagal Nerve Stimulation in Cancer

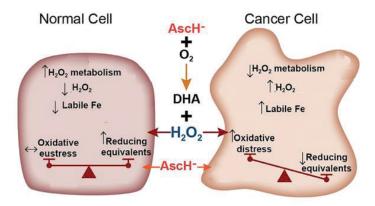
Vagal nerve stimulation also has therapeutic potential as an adjuvant therapy for cancer patients.⁴⁹⁴ As previously mentioned, the TME is inflammatory and the nervous system and immune system continually seek to reduce the inflammation and return the body to homeostasis. Importantly, the vagal nerve carries the 'off switch' for inflammatory cytokine production. Vagal nerve activation transmits electrical signals to the spleen, triggering the chemical activation of WBC which, in turn, release acetylcholine (ACh). This serves as the specific signal for macrophages to cease production of TNF-α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thereby reducing inflammation.

Heart rate variability (HRV) is intimately linked with vagal tone, and is therefore widely used to assess vagal activity. Higher HRV was predictive of improved survival rates and lower tumour markers in patients with colon cancer, non-small cell lung cancer as well as prostate and breast cancer, illustrating the potential influence of the vagus nerve to modulate immunological responses relevant to anticancer immunity.⁴⁹⁵

Further evidence for the protective effect of the vagus nerve in cancer is provided from patients who have undergone vagotomy to treat peptic ulcers. This was associated with an increased risk of gastric, colorectal, biliary tract and lung cancers as well as increased mortality in pulmonary carcinoma.⁴⁹⁶

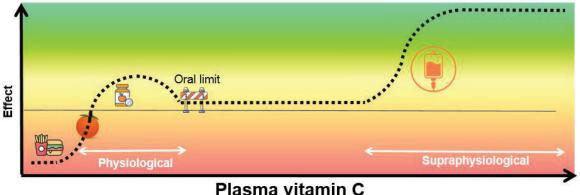
Besides electrical stimulation, several other therapies can be employed to activate the vagus nerve to 'turn down' inflammation. These include polyphenol compounds such as curcumin in turmeric; nutrients such as fish oil and magnesium; and therapeutic modalities such as acupuncture, rhythmic breathing, exercise and postural techniques.

Interestingly, the human vagus nerve produces SPMs (see page 23 for more information about SPMs), which was observed in a study after electrical vagal stimulation.⁴⁹⁷ Therefore, restoring vagal tone offers the additional advantage of supporting the resolution of the inflammatory process locally and systemically.

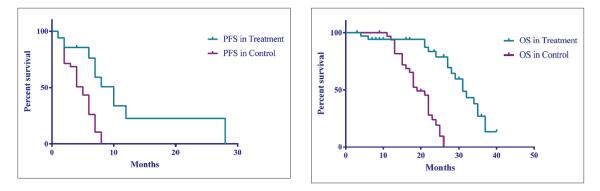

Intravenous Vitamin C

The use of intravenous vitamin C (IVC) to treat cancer, dates back to the 1970s work of Nobel Laureate Linus Pauling, who treated patients with advanced cancer with high doses of vitamin C and reported a positive effect on survival.⁴⁹⁸ Whilst there are numerous hypotheses about the anticancer mechanisms of vitamin C, the most widely accepted is based on its pro-oxidant capacity against tumour cells, while simultaneously acting as an antioxidant in normal tissue.

Figure 32 illustrates how ascorbic acid (AscH-) displays selective toxicity to cancer cells. As AscH- undergoes oxidation, hydrogen peroxide (H_2O_2) is produced which cancer cells are unable to remove, thus generating high levels of oxidative stress (OS). In addition, AscH- disrupts iron metabolism within cancer cells leading to increased levels of labile iron and further OS. This also makes the cancer cells more sensitive to the effects of chemoradiation. By contrast, H_2O_2 is nontoxic to normal cells, which have a high capability to metabolise H_2O_2 along with highly regulated iron metabolism.⁴⁹⁹



AscH-: Ascorbic acid; DHA: Dehydroascorbic acid; H₂O₂: Hydrogen peroxide <u>Figure 32: Pro-oxidant and anticancer effect of IV vitamin C.</u>⁵⁰⁰


The upper oral limit of supplemental vitamin C is constrained as intestinal uptake is regulated by the sodium-dependant vitamin C transporter-1. This is bypassed with IVC administration, achieving considerably higher plasma concentrations, up to 20 mmol/L. It is generally understood that plasma vitamin C concentrations >20 mmol/L are required for generation of H_2O_2 .⁵⁰¹ Therefore, the supraphysiological doses required to increase plasma concentrations to these levels can only be achieved with IVC (Figure 33).

A systematic review concluded that treatment with vitamin C in cancer patients is safe and has minimal side effects, even with high doses of IVC. Further, IVC has been studied in numerous types of cancer, both alone and alongside chemotherapy, where it has been found beneficial to reduce the side effects of cytotoxic chemotherapeutic agents and prolong survival in cancer patients.⁵⁰²

A retrospective study investigated the impact of chemotherapy with or without IVC on seventy women with advanced TNBC. Those women who received chemotherapy and IVC had a median progression-free survival time and median overall survival time of seven months and 27 months respectively, compared with four and a half months and 18 months in the control group (Figure 34).

PFS: progression free survival; OS: overall survival

Figure 34: IV vitamin C prolongs survival in patients with advanced triple negative breast cancer.⁵⁰³

Screening Tools for Early Detection and Surveillance

Given the enormous impact of cancer on society, cancer screening and surveillance may offer hope in gaining earlier detection, improved prognosis and even personalised intervention. Table 11 highlights the evidence for, and limitations of a selection of novel and emerging screening tools.⁵⁰⁴

Test	Background	Evidence	Limitations
Digital thermography	Used since the 1960s to detect temperature variation on the surface of the skin. Most of the literature describing the use of thermography in cancer is based on breast cancer. ⁵⁰⁶	 Demonstrated differentiation of: Malignant from benign lesions in women (pre- and post-menopausal) with an identified breast tissue mass. Fibroadenoma/cysts and malignant lesions in females with palpable breast mass.⁵⁰⁷ 	 Not appropriate for evaluation of granulomatous mastitis.⁵⁰⁸ Does not provide information on structural characteristics of tissue/organ.⁵⁰⁹ Research has demonstrated false positive cases, with 68% false positives in one study and 27% in another study.⁵¹⁰ Its role is considered complementary to other techniques as alone it does not provide sufficient information for screening or for diagnostic confirmation in breast cancer.⁵¹¹ Mammographic screening is still gold standard for early breast cancer detection⁵¹² and thermography cannot be substituted for mammography in early breast cancer diagnosis.⁵¹³
Circulating Tumour Cell (CTC) test	CTCs are cells that shed from the tumour and enter into circulation. CTCs can also enter the bone marrow and stay dormant for differing time periods. CTCs are proposed as being the primary cause of cancer metastasis. ⁵¹⁴	 CTC molecular analysis provides information about the tumour including cell morphology, immunological phenotype and establishment of multiple mutations within the cell, revealing tumour heterogeneity. Using enumeration methods (biological cell features) CTC sensitivity is approx. 65% in metastatic breast cancer.⁵¹⁵ Prognostic marker: Use of epithelial cell surface marker identified for breast,⁵¹⁶ prostate and non-small cell lung cancer, five CTCs in 7.5 ml of blood is associated with lower survival rate. 	 Detection is challenging due to small numbers in samples and large numbers of other cells in samples e.g. one CTC per 10,000,000 WBC/mm of blood.^{518,519} Detection methods rely on physical properties of cells. More successful and widely accepted approach, known as enumeration, uses specific biological features such as cell surface markers.⁵²⁰

Table 11: Evidence and limitations of existing and emerging screening tools.⁵⁰⁵

Test	Background	Evidence	Limitations
		 Biomarker of treatment efficacy: A decrease in either total CTC number or in a subgroup exhibiting a specific biomarker (e.g. epithelial growth derived receptor) is observed in response to therapy. Conversely, an increase in CTC after treatment is associated with reduced survival. Predictive biomarker: Provides more personalised therapy as CTCs can identify the expression of specific markers which may be resistance mutations or mutations specific to certain cancers, allowing for appropriate therapy to be utilised, increasing survival chances.⁵¹⁷ 	
Circulating tumour derived DNA (ctDNA)	Low levels of ctDNA found in healthy individuals. However, under circumstances including but not limited to cancer, levels of ctDNA increase. ctDNA is used for: • Early cancer detection • To monitor tumour progression • To identify mutations, thereby personalising treatment. ⁵²¹	 Greater accuracy in comparable studies with CTCs. Comparison with CTC carried out in 30 breast cancer patients with PIK3CA and p53 mutations. Detectable ctDNA levels found in 97% of patients compared with 87% identified by CTCs.⁵²² Offers a greater efficacy and personalisation with pharmacological therapies. An acquired epithelial growth factor (EGFR) resistance mutation was identified by ctDNA following treatment with an EGFR inhibitor. This identification allows for more appropriate treatment to be introduced.⁵²³ 	 Greater accuracy in comparable studies with CTCs. Comparison with CTC carried out in 30 breast cancer patients with PIK3CA and p53 mutations. Detectable ctDNA levels found in 97% of patients compared with 87% identified by CTCs.⁵²⁴ Offers a greater efficacy and personalisation with pharmacological therapies. An acquired epithelial growth factor (EGFR) resistance mutation was identified by ctDNA following treatment with an EGFR inhibitor. This identification allows for more appropriate treatment to be introduced.⁵²⁵

Conclusion

Natural health care Practitioners have a huge role to play in a cancer patient's journey. Putting the patient first, right at the centre of care, means considering their priorities, addressing the side effects of treatment and improving quality of life. This approach can utilise safe and effective ingredients as well as lifestyle interventions such as diet, sleep and physical activity. Furthermore, psycho-oncology is a major pillar of patient centred care, not only helping patients live well through their journey, but also improving their outcomes (Figure 35). Together, this offers a comprehensive strategy to integrative, patient centred oncology.

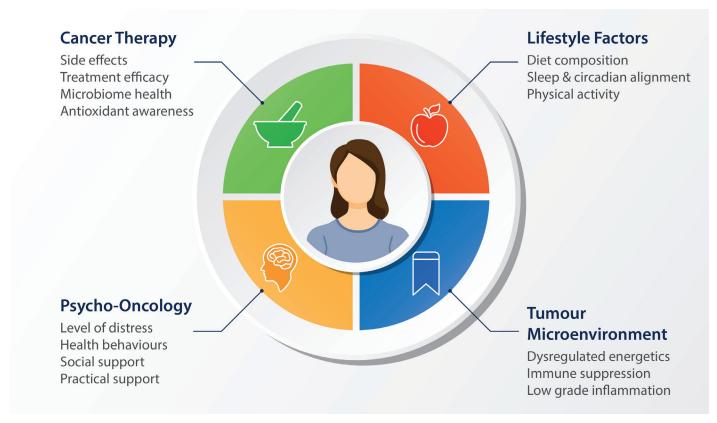


Figure 35: Patient centred care, with in the context of integrative oncology.

⁵ Martin GS. The road to Src. Oncogene. 2004 Oct 18;23(48):7910-7. doi: 10.1038/sj.onc.1208077.

⁶ Bagci O, Kurtgöz S. Amplification of cellular oncogenes in solid tumors. N Am J Med Sci. 2015 Aug;7(8):341-6. doi: 10.4103/1947-2714.163641.

⁷ Takashima A, Faller DV. Targeting the RAS oncogene. Expert Opin Ther Targets. 2013 May;17(5):507-31. doi: 10.1517/14728222.2013.764990.

⁸ Takashima A, Faller DV. Targeting the RAS oncogene. Expert Opin Ther Targets. 2013 May;17(5):507-31. doi: 10.1517/14728222.2013.764990.

⁹ Bagci O, Kurtgöz S. Amplification of cellular oncogenes in solid tumors. N Am J Med Sci. 2015 Aug;7(8):341-6. doi: 10.4103/1947-2714.163641.

¹⁰ Vicario R, Peg V, Morancho B, Zacarias-Fluck M, Zhang J, Martínez-Barriocanal Á, et al. Patterns of HER2 gene amplification and response to anti-HER2 therapies. PLoS One. 2015 Jun 15;10(6):e0129876. doi: 10.1371/journal.pone.0129876.

¹¹ Zheng J. Oncogenic chromosomal translocations and human cancer (review). Oncol Rep. 2013 Nov;30(5):2011-9. doi: 10.3892/or.2013.2677.

¹² World Health Organization. Human papillomavirus (HPV) and cervical cancer [Internet]. Who.int. 2020 [cited 14 Apr 2020]. Available from: <u>https://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer</u>

¹³ Stein Y, Rotter V, Aloni-Grinstein R. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int J Mol Sci. 2019 Dec 8;20(24). pii: E6197. doi: 10.3390/ijms20246197.

¹⁴ Stein Y, Rotter V, Aloni-Grinstein R. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int J Mol Sci. 2019 Dec 8;20(24). pii: E6197. doi: 10.3390/ijms20246197.

¹⁵ Mendoza PR, Grossniklaus HE. The biology of retinoblastoma. Prog Mol Biol Transl Sci. 2015;134:503-16. doi: 10.1016/bs.pmbts.2015.06.012.

¹⁶ Mendoza PR, Grossniklaus HE. The biology of retinoblastoma. Prog Mol Biol Transl Sci. 2015;134:503-16. doi: 10.1016/bs.pmbts.2015.06.012.

¹⁷ Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem. 2018;51(6):2647-93. doi: 10.1159/000495956.

¹⁸ Brücher BL, Jamall IS. Somatic mutation theory - why it's wrong for most cancers. Cell Physiol Biochem. 2016;38(5):1663-80. doi: 10.1159/000443106.

¹⁹ Baker SG. A cancer theory kerfuffle can lead to new lines of research. J Natl Cancer Inst. 2014 Dec 20;107(2). pii: dju405. doi: 10.1093/jnci/dju405.

²⁰ Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet. 2018 Jan 4;14(1):e1007108. doi: 10.1371/journal.pgen.1007108.

²¹ Baker SG. A cancer theory kerfuffle can lead to new lines of research. J Natl Cancer Inst. 2014 Dec 20;107(2). pii: dju405. doi: 10.1093/jnci/dju405.

²² Mukherjee S. The emperor of all maladies: a biography of cancer. New York: Scribner; 2010.

²³ Pray LA. Gleevec: the breakthrough in cancer treatment. Nature Education. 2008;1(1):37.

²⁴ Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 2015 Aug;42(4):587-600. doi: 10.1053/j.seminoncol.2015.05.013.

²⁵ Australian Institute of Health and Welfare. Cancer in Australia 2019. Cancer series no.119. Cat. no. CAN 123 [Internet]. Canberra: AIHW. Available from: <u>https://www.aihw.gov.au/getmedia/8c9fcf52-0055-41a0-96d9-f81b0feb98cf/aihw-can-123.pdf.aspx?inline=true</u>

²⁶ Australian Institute of Health and Welfare. Cancer in Australia 2019. Cancer series no.119. Cat. no. CAN 123 [Internet]. Canberra: AIHW. Available from: <u>https://www.aihw.gov.au/getmedia/8c9fcf52-0055-41a0-96d9-f81b0feb98cf/aihw-can-123.pdf.aspx?inline=true</u>

¹ Oneview [Internet]. Chicago, IL: Oneview Ltd; 2020. The eight principles of patient-centred care; 2015 May 15 [cited 2020 Apr 4]. Available from: <u>https://www.oneviewhealthcare.com/</u>

² Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57-70. doi: 10.1016/s0092-8674(00)81683-9.

³ Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.

⁴ Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.

²⁷ Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev. 2020 Jan 1;78(1):65-76. doi: 10.1093/nutrit/nuz027.

²⁸ Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev. 2020 Jan 1;78(1):65-76. doi: 10.1093/nutrit/nuz027.

²⁹ Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019 Jul 16;51(1):27-41. doi: 10.1016/j.immuni.2019.06.025.

³⁰ Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019 Jun 17;129(7):2964-2979. doi: 10.1172/JCl127282.

³¹ Abrams DI, Weil AT. Integrative oncology. 2nd ed. New York: Oxford University Press; 2014. p.169-175. ³² Parida DK, Wakame K, Nomura T. Integrating complementary and alternative medicine in form of active hexose co-related compound (AHCC) in the management of head and neck cancer patients. Int J Clin Med. 2011 Nov;2(588-592):20. doi:10.4236/ijcm.2011.25097.

³³ Hirose A, Sato E, Fujii H, Sun B, Nishioka H, Aruoma OI. The influence of active hexose correlated compound (AHCC) on cisplatin-evoked chemotherapeutic and side effects in tumour-bearing mice. Toxicol Appl Pharmacol. 2007 Jul;222(2):152-8. PMID: 17555784.

³⁴ Ito T, Urushima H, Sakaue M, Yukawa S, Honda H, Hirai K, et al. Reduction of adverse effects by a mushroom product, active hexose correlated compound (AHCC) in patients with advanced cancer during chemotherapy--the significance of the levels of HHV-6 DNA in saliva as a surrogate biomarker during chemotherapy. Nutr Cancer. 2014;66(3):377-82. doi:10.1080/01635581.2014.884232.

³⁵ Parida DK, Wakame K, Nomura T. Integrating complementary and alternative medicine in form of active hexose co-related compound (AHCC) in the management of head and neck cancer patients. Int J Clin Med. 2011 Nov;2(588-592):20. doi:10.4236/ijcm.2011.25097.

³⁶ Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol. 2006 Mar;24(1):33-45. PMID: 16913187.

³⁷ Parida DK, Wakame K, Nomura T. Integrating complementary and alternative medicine in form of active hexose co-related compound (AHCC) in the management of head and neck cancer patients. Int J Clin Med. 2011 Nov;2(588-592):20. doi:10.4236/ijcm.2011.25097.

³⁸ Ito T, Urushima H, Sakaue M, Yukawa S, Honda H, Hirai K, et al. Reduction of adverse effects by a mushroom product, active hexose correlated compound (AHCC) in patients with advanced cancer during chemotherapy--the significance of the levels of HHV-6 DNA in saliva as a surrogate biomarker during chemotherapy. Nutr Cancer. 2014;66(3):377-82. doi:10.1080/01635581.2014.884232.

³⁹ Hangai S, Iwase S, Kawaguchi T, Kogure Y, Miyaji T, Matsunaga T, et al. Effect of active hexose-correlated compound in women receiving adjuvant chemotherapy for breast cancer: a retrospective study. J Altern Complement Med. 2013 Nov;19(11):905-10. doi: 10.1089/acm.2012.0914.

⁴⁰ Ito T, Urushima H, Sakaue M, Yukawa S, Honda H, Hirai K, et al. Reduction of adverse effects by a mushroom product, active hexose correlated compound (AHCC) in patients with advanced cancer during chemotherapy--the significance of the levels of HHV-6 DNA in saliva as a surrogate biomarker during chemotherapy. Nutr Cancer. 2014;66(3):377-82. doi:10.1080/01635581.2014.884232.

⁴¹ Ryan JL, Heckler CE, Roscoe JA, Dakhil SR, Kirshner J, Flynn PJ, et al. Ginger (*Zingiber officinale*) reduces acute chemotherapy-induced nausea: a URCC CCOP study of 576 patients. Support Care Cancer. 2012 Jul;20(7):1479-89. doi: 10.1007/s00520-011-1236-3.

⁴² Marx W, McCarthy AL, Ried K, McKavanagh D, Vitetta L, Sali A, et al. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: a double blind, randomized, placebo controlled trial. Nutrients. 2017 Aug;9(8). pii: E867. doi: 10.3390/nu9080867.

⁴³ Yekta ZP, Ebrahimi SM, Hosseini M, Nasrabadi AN, Sedighi S, Surmaghi MH, et al. Ginger as a miracle against chemotherapy-induced vomiting. Iran J Nurs Midwifery Res. 2012 Jul;17(5):325-9. PMID: 23853643.
 ⁴⁴ Marx W, McCarthy AL, Ried K, McKavanagh D, Vitetta L, Sali A, et al. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: a double blind, randomized, placebo controlled trial. Nutrients. 2017 Aug;9(8). pii: E867. doi: 10.3390/nu9080867.

⁴⁵ Hangai S, Iwase S, Kawaguchi T, Kogure Y, Miyaji T, Matsunaga T, et al. Effect of active hexose-correlated compound in women receiving adjuvant chemotherapy for breast cancer: a retrospective study. J Altern Complement Med. 2013 Nov;19(11):905-10. doi: 10.1089/acm.2012.0914.

⁴⁶ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁴⁷ Kucerova P, Vlasakova J, Cervinkova M. Coley's toxin and BCG vaccine in prevention and treatment of malignant melanoma in humans. Rev Med Microbiol. 2017 Jul 1;28(3):124-8. doi:10.1097/MRM.000000000000108.

⁴⁸ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁴⁹ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁵⁰ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁵¹ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁵² Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁵³ Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016 Jun;279(6):541-62. doi: 10.1111/joim.12470.

⁵⁴ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁵⁵ Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁵⁶ Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018 Feb 22;172(5):1022-1037.e14. doi: 10.1016/j.cell.2018.01.004.

⁵⁷ Böttcher JP, Reis E, Sousa C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁵⁸ Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018 Feb 22;172(5):1022-1037.e14. doi: 10.1016/j.cell.2018.01.004.

⁵⁹ Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁶⁰ Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7-19. doi: 10.1038/nrc.2015.5.

⁶¹ Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁶² Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁶³ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁶⁴ Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁶⁵ Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7-19. doi: 10.1038/nrc.2015.5.

⁶⁶ Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7-19. doi: 10.1038/nrc.2015.5.

⁶⁷ Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7-19. doi: 10.1038/nrc.2015.5.

⁶⁸ Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018 Feb 22;172(5):1022-1037.e14. doi: 10.1016/j.cell.2018.01.004.

⁶⁹ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁷⁰ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁷¹ Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017 Aug;11(8):BE01-BE05. doi: 10.7860/JCDR/2017/26748.10469.

⁷² Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁷³ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁷⁴ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁷⁵ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁷⁶ Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO,

et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol. 2014 Apr 15;5:174. doi: 10.3389/fimmu.2014.00174.

⁷⁷ Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO,

et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol. 2014 Apr 15;5:174. doi: 10.3389/fimmu.2014.00174.

⁷⁸ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁷⁹ Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016 Jun;279(6):541-62. doi: 10.1111/joim.12470.

⁸⁰ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁸¹ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁸² Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁸³ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

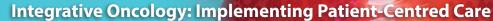
⁸⁴ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁸⁵ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁸⁶ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁸⁷ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁸⁸ Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016 Jun;279(6):541-62. doi: 10.1111/joim.12470.


⁸⁹ Narita Y, Kitamura H, Wakita D, Sumida K, Masuko K, Terada S, et al. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice. J Immunol. 2013 Jan 15;190(2):812-20. doi: 10.4049/jimmunol.1103797.

⁹⁰ Narita Y, Kitamura H, Wakita D, Sumida K, Masuko K, Terada S, et al. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice. J Immunol. 2013 Jan 15;190(2):812-20. doi: 10.4049/jimmunol.1103797.

⁹¹ Narita Y, Kitamura H, Wakita D, Sumida K, Masuko K, Terada S, et al. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice. J Immunol. 2013 Jan 15;190(2):812-20. doi: 10.4049/jimmunol.1103797.

⁹² Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi: 10.1016/b978-0-12-374279-7.17001-8.

⁹³ Narita Y, Kitamura H, Wakita D, Sumida K, Masuko K, Terada S, et al. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice. J Immunol. 2013 Jan 15;190(2):812-20. doi: 10.4049/jimmunol.1103797.

⁹⁴ Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018 Feb 22;172(5):1022-1037.e14. doi: 10.1016/j.cell.2018.01.004.

⁹⁵ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁹⁶ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

⁹⁷ Böttcher JP, Reis E Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018 Nov;4(11):784-792. doi: 10.1016/j.trecan.2018.09.001.

⁹⁸ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

⁹⁹ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹⁰⁰ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁰¹ Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016 Jun;279(6):541-62. doi: 10.1111/joim.12470.

¹⁰² Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity. Immunol Med. 2019 Dec 10:1-9. doi: 10.1080/25785826.201 9.1698261.

¹⁰³ Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res. 2017 Feb;5(2):106-117. doi: 10.1158/2326-6066.CIR-16-0391.

¹⁰⁴ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi:10.1016/b978-0-12-374279-7.17001-8.

¹⁰⁵ Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity. Immunol Med. 2019 Dec 10:1-9. doi: 10.1080/25785826.201 9.1698261.

¹⁰⁶ Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi:10.1016/b978-0-12-374279-7.17001-8.

¹⁰⁷ Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity. Immunol Med. 2019 Dec 10:1-9. doi: 10.1080/25785826.201 9.1698261.

¹⁰⁸ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹⁰⁹ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹¹⁰ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹¹¹ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹¹² Lussier DM, Schreiber RD. Cancer immunosurveillance: immunoediting. Encyclopedia of Immunobiology. 2016 4:396–405. doi:10.1016/b978-0-12-374279-7.17001-8.

¹¹³ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹¹⁴ Bos PD. T(reg) cells in cancer: beyond classical immunological control. Immunol Invest. 2016 Nov;45(8):721-728. doi: 10.1080/08820139.2016.1222206.

¹¹⁵ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹¹⁶ Bos PD. T(reg) cells in cancer: beyond classical immunological control. Immunol Invest. 2016 Nov;45(8):721-728. doi: 10.1080/08820139.2016.1222206.

¹¹⁷ Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun;44(6):1582-92. doi: 10.1002/eji.201344272.

¹¹⁸ Bos PD. T(Reg) cells in cancer: beyond classical immunological control. Immunol Invest. 2016 Nov;45(8):721-728. doi: 10.1080/08820139.2016.1222206.

¹¹⁹ Bos PD. T(Reg) cells in cancer: beyond classical immunological control. Immunol Invest. 2016 Nov;45(8):721-728. doi: 10.1080/08820139.2016.1222206.

¹²⁰ Hanahan D, Weinberg RA. Biological hallmarks of cancer. In: Khuri FR. Holland-Frei Cancer Medicine Cloth. 9th ed [Internet]. New Jersey: John Wiley & Sons; 2017 [cited 2020 Jan 8]. p. 255-264. Available from:

https://www.epfl.ch/labs/hanahan-lab/wp-content/uploads/2019/02/HanahanWeinberg-HoC_Holland-Frei-Ch-2-2017.pdf

¹²¹ Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99(Pt B):186–196. doi:10.1016/j.addr.2015.07.007.

¹²² Hanahan D, Weinberg RA. Biological hallmarks of cancer. In: Khuri FR. Holland-Frei Cancer Medicine Cloth. 9th ed [Internet]. New Jersey: John Wiley & Sons; 2017 [cited 2020 Jan 8]. p. 255-264. Available from: <u>https://www.epfl.ch/labs/hanahan-lab/wp-content/uploads/2019/02/HanahanWeinberg-HoC_Holland-Frei-Ch-2-2017.pdf</u>

¹²³ Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99(Pt B):186–196. doi:10.1016/j.addr.2015.07.007.

¹²⁴ Hanahan D, Weinberg RA. Biological hallmarks of cancer. In: Khuri FR. Holland-Frei Cancer Medicine Cloth. 9th ed [Internet]. New Jersey: John Wiley & Sons; 2017 [cited 2020 Jan 8]. p. 255-264. Available from: <u>https://www.epfl.ch/labs/hanahan-lab/wp-content/uploads/2019/02/HanahanWeinberg-HoC_Holland-Frei-Ch-2-2017.pdf</u>

¹²⁵ Fujita M, Matsumoto T, Hirano R, Ishii K, Hiromatsu K, Uchino J, et al. Attenuation of pulmonary *Mycobacterium avium* disease by active hexose correlated compound (AHCC) in mice. J Nutr Disorders Ther. 2015;5(174):2161-0509. doi: 10.4172/2161-0509.1000174.

¹²⁶ Belay T, Fu CL, Woart A. Active hexose correlated compound activates immune function to decrease *Chlamydia trachomatis* shedding in a murine stress model. J Nutr Med Diet Care. 2015;1(1). pii: JNMDC-1-006. PMID:27790645.

¹²⁷ Yin Z, Fujii H, Walshe T. Effects of active hexose correlated compound on frequency of CD4+ and CD8+ T cells producing interferon- γ and/or tumour necrosis factor- α in healthy adults. Hum Immunol. 2010 Dec;71(12):1187-90. doi: 10.1016/j.humimm.2010.08.006.

¹²⁸ Mallet JF, Graham É, Ritz BW, Homma K, Matar C. Active hexose correlated compound (AHCC) promotes an intestinal immune response in BALB/c mice and in primary intestinal epithelial cell culture involving tolllike receptors TLR-2 and TLR-4. Eur J Nutr. 2016 Feb;55(1):139-46. doi: 10.1007/s00394-015-0832-2.

¹²⁹ Ritz BW, Nogusa S, Ackerman EA, Gardner EM. Supplementation with active hexose correlated compound increases the innate immune response of young mice to primary influenza infection. J Nutr. 2006 Nov;136(11):2868-73. PMID: 17056815.

¹³⁰ Roman BE, Beli E, Duriancik DM, Gardner EM. Short-term supplementation with active hexose correlated compound improves the antibody response to influenza B vaccine. Nutr Res. 2013 Jan;33(1):12-7. doi: 10.1016/j.nutres.2012.11.001.

¹³¹ Nogusa S, Gerbino J, Ritz BW. Low-dose supplementation with active hexose correlated compound improves the immune response to acute influenza infection in C57BL/6 mice. Nutr Res. 2009 Feb;29(2):139-43. doi: 10.1016/j.nutres.2009.01.005.

¹³² Wang S, Welte T, Fang H, Chang GJ, Born WK, O'Brien RL, et al. Oral administration of active hexose correlated compound enhances host resistance to West Nile encephalitis in mice. J Nutr. 2009 Mar;139(3):598-602. doi: 10.3945/jn.108.100297.

¹³³ Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol. 2006 Mar;24(1):33-45. PMID: 16913187.

¹³⁴ Smith JA, Mathew L, Gaikwad A, Rech B, Burney MN, Faro JP, et al. From bench to bedside: Evaluation of AHCC supplementation to modulate the host immunity to clear high-risk human papillomavirus infections. Front Oncol. 2019 Mar 20;9:173. doi: 10.3389/fonc.2019.00173.

¹³⁵ Aviles H, Belay T, Fountain K, Vance M, Sun B, Sonnenfeld G. Active hexose correlated compound enhances resistance to *Klebsiella pneumoniae* infection in mice in the hindlimb-unloading model of spaceflight conditions. J Appl Physiol (1985). 2003 Aug;95(2):491-6. PMID: 12692142.

¹³⁶ Terakawa N, Matsui Y, Satoi S, Yanagimoto H, Takahashi K, Yamamoto T, et al. Immunological effect of active hexose correlated compound (AHCC) in healthy volunteers: a double-blind, placebo-controlled trial. Nutr Cancer. 2008;60(5):643-51. doi: 10.1080/01635580801993280.

¹³⁷ Ritz BW, Nogusa S, Ackerman EA, Gardner EM. Supplementation with active hexose correlated compound increases the innate immune response of young mice to primary influenza infection. J Nutr. 2006 Nov;136(11):2868-73. PMID: 17056815.

¹³⁸ Terakawa N, Matsui Y, Satoi S, Yanagimoto H, Takahashi K, Yamamoto T, et al. Immunological effect of active hexose correlated compound (AHCC) in healthy volunteers: a double-blind, placebo-controlled trial. Nutr Cancer. 2008;60(5):643-51. doi: 10.1080/01635580801993280.

¹³⁹ Cao Z, Chen X, Lan L, Zhang Z, Du J, Liao L. Active hexose correlated compound potentiates the antitumour effects of low-dose 5-fluorouracil through modulation of immune function in hepatoma 22 tumour-bearing mice. Nutr Res Pract. 2015 Apr;9(2):129-36. doi: 10.4162/nrp.2015.9.2.129.

¹⁴⁰ Cao Z, Chen X, Lan L, Zhang Z, Du J, Liao L. Active hexose correlated compound potentiates the antitumour effects of low-dose 5-fluorouracil through modulation of immune function in hepatoma 22 tumour-bearing mice. Nutr Res Pract. 2015 Apr;9(2):129-36. doi: 10.4162/nrp.2015.9.2.129.

¹⁴¹ Roman BE, Beli E, Duriancik DM, Gardner EM. Short-term supplementation with active hexose correlated compound improves the antibody response to influenza B vaccine. Nutr Res. 2013 Jan;33(1):12-7. doi: 10.1016/j.nutres.2012.11.001.

¹⁴² Yin Z, Fujii H, Walshe T. Effects of active hexose correlated compound on frequency of CD4+ and CD8+ T cells producing interferon- γ and/or tumour necrosis factor- α in healthy adults. Hum Immunol. 2010 Dec;71(12):1187-90. doi: 10.1016/j.humimm.2010.08.006.

¹⁴³ Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol. 2006 Mar;24(1):33-45. PMID: 16913187.

¹⁴⁴ Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol. 2006 Mar;24(1):33-45. PMID: 16913187.

¹⁴⁵ Matsui Y, Uhara J, Satoi S, Kaibori M, Yamada H, Kitade H, et al. Improved prognosis of postoperative hepatocellular carcinoma patients when treated with functional foods: a prospective cohort study. J Hepatol. 2002 Jul;37(1):78-86. PMID: 12076865.

¹⁴⁶ Kawaguchi Y. Improved survival of patients with gastric cancer or colon cancer when treated with active hexose correlated compound (AHCC): effect of AHCC on digestive system cancer. Nat Med J. 2009;1(1):1-6.

¹⁴⁷ Yanagimoto H, Satoi S, Yamamoto T, Hirooka S, Yamaki S, Kotsuka M, et al. Alleviating effect of active hexose correlated compound (AHCC) on chemotherapy-related adverse events in patients with unresectable pancreatic ductal adenocarcinoma. Nutr Cancer. 2016;68(2):234-40. doi: 10.1080/01635581.2016.1134597.

¹⁴⁸ Parida DK, Wakame K, Nomura T. Integrating complementary and alternative medicine in form of active hexose co-related compound (AHCC) in the management of head and neck cancer patients. Int J Clin Med. 2011 Nov;2(588-592):20. doi:10.4236/ijcm.2011.25097.

¹⁴⁹ Hirose A, Sato E, Fujii H, Sun B, Nishioka H, Aruoma OI. The influence of active hexose correlated compound (AHCC) on cisplatin-evoked chemotherapeutic and side effects in tumour-bearing mice. Toxicol Appl Pharmacol. 2007 Jul;222(2):152-8. PMID: 17555784.

¹⁵⁰ Shigama K, Nakaya A, Wakame K, Nishioka H, Fujii H. Alleviating effect of active hexose correlated compound (AHCC) for anticancer drug-induced side effects in non-tumour-bearing mice. J Exp Ther Oncol. 2009;8(1):43-51. PMID: 19827270.

¹⁵¹ Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol. 2006 Mar;24(1):33-45. PMID: 16913187.

¹⁵² Matsui Y, Uhara J, Satoi S, Kaibori M, Yamada H, Kitade H, et al. Improved prognosis of postoperative hepatocellular carcinoma patients when treated with functional foods: a prospective cohort study. J Hepatol. 2002 Jul;37(1):78-86. PMID: 12076865.

¹⁵³ Matsui Y, Uhara J, Satoi S, Kaibori M, Yamada H, Kitade H, et al. Improved prognosis of postoperative hepatocellular carcinoma patients when treated with functional foods: a prospective cohort study. J Hepatol. 2002 Jul;37(1):78-86. PMID: 12076865.

¹⁵⁴ Kawaguchi Y. Improved survival of patients with gastric cancer or colon cancer when treated with active hexose correlated compound (AHCC): effect of AHCC on digestive system cancer. Nat Med J. 2009;1(1):1-6.

¹⁵⁵ Matsui Y, Uhara J, Satoi S, Kaibori M, Yamada H, Kitade H, et al. Improved prognosis of postoperative hepatocellular carcinoma patients when treated with functional foods: a prospective cohort study. J Hepatol. 2002 Jul;37(1):78-86. PMID: 12076865.

¹⁵⁶ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: A new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁵⁷ Yang L, Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol. 2017 Dec;47:185-195. doi: 10.1016/j.semcancer.2017.08.001.

¹⁵⁸ Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883-99. doi: 10.1016/j.cell.2010.01.025.

¹⁵⁹ Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009 Jan 15;15(2):425-30. doi: 10.1158/1078-0432.CCR-08-0149.

¹⁶⁰ Wroblewski LE, Peek RM Jr. Helicobacter pylori, cancer, and the gastric microbiota. Adv Exp Med Biol. 2016;908:393-408. doi: 10.1007/978-3-319-41388-4 19.

¹⁶¹ Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883-99. doi: 10.1016/j.cell.2010.01.025.

¹⁶² Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883-99. doi: 10.1016/j.cell.2010.01.025.

¹⁶³ Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883-99. doi: 10.1016/j.cell.2010.01.025.

¹⁶⁴ Wilson LF, Baade PD, Green AC, Jordan SJ, Kendall BJ, Neale RE, et al. The impact of changing the prevalence of overweight/obesity and physical inactivity in Australia: An estimate of the proportion of potentially avoidable cancers 2013-2037. Int J Cancer. 2019 May 1;144(9):2088-2098. doi: 10.1002/ijc.31943.

¹⁶⁵ Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol. 2016 May 23;11:421-49. doi: 10.1146/annurev-pathol-012615-044359.

¹⁶⁶ Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883-99. doi: 10.1016/j.cell.2010.01.025.

¹⁶⁷ Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007 May;121(1):1-14. Epub 2007 Mar 26. Review. PMID: 17386080.

¹⁶⁸ Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16-25. doi: 10.1016/j.coi.2014.01.004.

¹⁶⁹ Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 Sep 15;79(18):4557-4566. doi: 10.1158/0008-5472.CAN-18-3962.

¹⁷⁰ Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018 9(25), 17937–17950. doi:org/10.18632/oncotarget.24788.

¹⁷¹ Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018 9(25), 17937–17950.
 doi:org/10.18632/oncotarget.24788.

¹⁷² Liguori M, Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel). 2011 Sep 28;3(4):3740-61. doi: 10.3390/cancers3043740.

¹⁷³Xiong H, Mittman S, Rodriguez R, Moskalenko M, Pacheco-Sanchez P, Yang Y, et al. Anti-PD-L1 treatment results in functional remodeling of the macrophage compartment. Cancer Res. 2019 Apr 1;79(7):1493-1506. doi: 10.1158/0008-5472.CAN-18-3208.

¹⁷⁴Xiong H, Mittman S, Rodriguez R, Moskalenko M, Pacheco-Sanchez P, Yang Y, et al. Anti-PD-L1 treatment results in functional remodeling of the macrophage compartment. Cancer Res. 2019 Apr 1;79(7):1493-1506. doi: 10.1158/0008-5472.CAN-18-3208.

¹⁷⁵ Sainz B Jr, Carron E, Vallespinós M, Machado HL. Cancer stem cells and macrophages: Implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016;2016:9012369. doi: 10.1155/2016/9012369.

¹⁷⁶ Liguori M, Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel). 2011 Sep 28;3(4):3740-61. doi: 10.3390/cancers3043740.

¹⁷⁷ Sainz B Jr, Carron E, Vallespinós M, Machado HL. Cancer stem cells and macrophages: Implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016;2016:9012369. doi: 10.1155/2016/9012369.

¹⁷⁸ Liguori M, Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel). 2011 Sep 28;3(4):3740-61. doi: 10.3390/cancers3043740.

¹⁷⁹ Wanderley CW, Colón DF, Luiz JPM, Oliveira FF, Viacava PR, Leite CA, et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 2018 Oct 15;78(20):5891-5900. doi: 10.1158/0008-5472.CAN-17-3480.

¹⁸⁰ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁸¹ Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019 Jun 17;129(7):2964-2979. doi: 10.1172/JCI127282.

¹⁸² Chiang N, Schwab JM, Fredman G, Kasuga K, Gelman S, Serhan CN. Anesthetics impact the resolution of inflammation. PLoS One. 2008 Apr 2;3(4):e1879. doi: 10.1371/journal.pone.0001879.

¹⁸³ Chang J, Bhasin SS, Bielenberg DR, Sukhatme VP, Bhasin M, Huang S, et al. Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin. FASEB J. 2019 Jan;33(1):114-125. doi: 10.1096/fj.201800019RR.

¹⁸⁴ Lee Y, Kollara A, May T, Brown TJ. Wounding promotes ovarian cancer progression and decreases efficacy of cisplatin in a syngeneic mouse model. J Ovarian Res. 2018 Jul 4;11(1):56. doi: 10.1186/s13048-018-0428-6.

¹⁸⁵ Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019 Jun 17;129(7):2964-2979. doi: 10.1172/JCI127282.

¹⁸⁶ Hayashi T, Fujita K, Matsushita M, Nonomura N. Main inflammatory cells and potentials of antiinflammatory agents in prostate cancer. Cancers (Basel). 2019 Aug 12;11(8). pii: E1153. doi: 10.3390/cancers11081153.

¹⁸⁷ Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019 Jun 17;129(7):2964-2979. doi: 10.1172/JCI127282.

¹⁸⁸ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁸⁹ Barden AE, Moghaddami M, Mas E, Phillips M, Cleland LG, Mori TA. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids. 2016 Apr;107:24-9. doi: 10.1016/j.plefa.2016.03.004.

¹⁹⁰ Zhang Q, Zhu B, Li Y. Resolution of Cancer-Promoting Inflammation: a New Approach for Anticancer Therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁹¹ Zhang Q, Zhu B, Li Y. Resolution of Cancer-Promoting Inflammation: a New Approach for Anticancer Therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁹² Zhang Q, Zhu B, Li Y. Resolution of Cancer-Promoting Inflammation: a New Approach for Anticancer Therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁹³ Nabavi SF, Bilotto S, Russo GL, Orhan IE, Habtemariam S, Daglia M, et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer Metastasis Rev. 2015 Sep;34(3):359-80. doi: 10.1007/s10555-015-9572-2.

¹⁹⁴ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁹⁵ Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019 Jun 17;129(7):2964-2979. doi: 10.1172/JCI127282.

¹⁹⁶ Zhang Q, Zhu B, Li Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol. 2017 Feb 2;8:71. doi: 10.3389/fimmu.2017.00071.

¹⁹⁷ Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81. doi:10.1002/ana.24951.

¹⁹⁸ Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

¹⁹⁹ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

²⁰⁰ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.

²⁰¹ Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiol. 2017 Dec 19;17(1):171. doi: 10.1186/s12871-017-0461-9.

²⁰² Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

²⁰³ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-13. doi: 10.2174/1871527316666170321124949.

²⁰⁴ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

²⁰⁵ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

²⁰⁶ Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

²⁰⁷ Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapy-induced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.

²⁰⁸ Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.

²⁰⁹ Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.

²¹⁰ The ASCO Post [Internet]. Huntington, NY: HSP News Service, L.L.C.; 2020. The microbiome: the next target in cancer therapy; 2019 Apr 25 [cited 2020 Apr 24]. Available from: <u>https://ascopost.com/issues/april-25-2019/the-microbiome-the-next-target-in-cancer-therapy/</u>

²¹¹ Whisner CM, Athena Aktipis C. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another's growth. Curr Nutr Rep. 2019 Mar;8(1):42-51. doi:10.1007/s13668-019-0257-2.

²¹² van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009 Jul 15;49(2):262-70. doi: 10.1086/599346.

²¹³ Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, Bruley des Varannes S, Massart S, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. 2015 Sep;42(5):515-28. doi: 10.1111/apt.13302.

²¹⁴ Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016 Feb 2;7:10391. doi: 10.1038/ncomms10391.

²¹⁵ Herremans KM, Riner AN, Cameron ME, Trevino JG. The microbiota and cancer cachexia. Int J Mol Sci. 2019 Dec 12;20(24). pii: E6267. doi: 10.3390/ijms20246267.

²¹⁶ Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the bottom-up: chemotherapy and gut-brain axis dysregulation. Front Behav Neurosci. 2018 May 22;12:104. doi: 10.3389/fnbeh.2018.00104.

²¹⁷ Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018 Jan 5;359(6371):97-103. doi: 10.1126/science.aan4236.

²¹⁸ Lalani AA, Xie W, Braun DA, Kaymakcalan M, Bossé D, Steinharter JA, et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol. 2019 Sep 24. pii: S2588-9311(19)30142-7. doi: 10.1016/j.euo.2019.09.001.

²¹⁹ Osterlund P, Ruotsalainen T, Korpela R, Saxelin M, Ollus A, Valta P, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer. 2007 Oct 22;97(8):1028-34. doi: 10.1038/sj.bjc.6603990.

²²⁰ Gorshein E, Wei C, Ambrosy S, Budney S, Vivas J, Shenkerman A, et al. *Lactobacillus rhamnosus* GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant. 2017 May;31(5). doi: 10.1111/ctr.12947.

²²¹ Gorshein E, Wei C, Ambrosy S, Budney S, Vivas J, Shenkerman A, et al. *Lactobacillus rhamnosus* GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant. 2017 May;31(5). doi: 10.1111/ctr.12947.

²²² Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015 May 15;60 Suppl 2:S129-34. doi: 10.1093/cid/civ085.

²²³ Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015 May 15;60 Suppl 2:S129-34. doi: 10.1093/cid/civ085.

²²⁴ Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015 May 15;60 Suppl 2:S129-34. doi: 10.1093/cid/civ085.

²²⁵ Blumberg J. The alpha-tocopherol, beta-carotene cancer prevention study in Finland. Nutrition reviews. 1994 Jul 1;52(7):242-5. doi: 10.1111/j.1753-4887.1994.tb01430.x

²²⁶ The ATBC cancer prevention study group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann Epidemiol. 1994 Jan;4(1):1-10. doi: 10.1016/1047-2797(94)90036-1.

²²⁷ Omenn GS, Goodman G, Grizzle J, Thornquist M, Rosenstock L, Barnhart S, et al. CARET, the betacarotene and retinol efficacy trial to prevent lung cancer in asbestos-exposed workers and in smokers. Anticancer Drugs. 1991 Feb;2(1):79-86. PMID: 1958856.

²²⁸ Omenn GS, Goodman G, Thornquist M, Grizzle J, Rosenstock L, Barnhart S, et al. The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. Cancer Res. 1994 Apr 1;54(7 Suppl):2038s-2043s. PMID: 8137335.

²²⁹ Goralczyk R. Beta-carotene and lung cancer in smokers: review of hypotheses and status of research. Nutr Cancer. 2009;61(6):767-74. doi: 10.1080/01635580903285155.

²³⁰ Goralczyk R. Beta-carotene and lung cancer in smokers: review of hypotheses and status of research. Nutr Cancer. 2009;61(6):767-74. doi: 10.1080/01635580903285155.

²³¹ Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170-8. Review. PMID: 25496272.

²³² Stone WL, Krishnan K, Campbell SE, Palau VE. The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol. 2014 Mar 15;6(3):55-66. doi: 10.4251/wjgo.v6.i3.55. Review. PMID: 24653795.

²³³ Yokoyama C, Sueyoshi Y, Ema M, Mori Y, Takaishi K, Hisatomi H. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol Lett. 2017 Nov;14(5):6066-6070. doi: 10.3892/ol.2017.6931.

²³⁴ Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results. Oxid Med Cell Longev. 2016;2016:6719534. doi: 10.1155/2016/6719534.

²³⁵ Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. *Int J Cancer*. 2008;123(6):1227–1239. doi:10.1002/ijc.23754.

²³⁶ Labriola D, Livingston R. Avoiding antioxidant-drug interactions during cancer treatment. ASCO Post 2014 July 25. Huntington, NY: Harborside; 2014 July 25 [cited 2020 Feb 18]. Available from: <u>https://www.ascopost.com/issues/july-25-2014/avoiding-antioxidant-drug-interactions-during-cancer-</u> treatment/

²³⁷ Stone WL, Krishnan K, Campbell SE, Palau VE. The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol. 2014 Mar 15;6(3):55-66. doi: 10.4251/wjgo.v6.i3.55. Review. PMID: 24653795.

²³⁸ Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170-8. Review. PMID: 25496272.

²³⁹ Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170-8. Review. PMID: 25496272.

²⁴⁰ Bairati I, Meyer F, Jobin E, Gélinas M, Fortin A, Nabid A, et al. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. Int J Cancer. 2006 Nov 1;119(9):2221-4. PMID: 16841333.

²⁴¹ Ferreira PR, Fleck JF, Diehl A, Barletta D, Braga-Filho A, Barletta A, et al. Protective effect of alphatocopherol in head and neck cancer radiation-induced mucositis: a double-blind randomized trial. Head Neck. 2004 Apr;26(4):313-21.

PubMed PMID: 15054734.

²⁴² Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170-8. Review. PMID: 25496272.

²⁴³ Bairati I, Meyer F, Jobin E, Gélinas M, Fortin A, Nabid A, et al. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. Int J Cancer. 2006 Nov 1;119(9):2221-4. PMID: 16841333.

²⁴⁴ Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - exploring the armoury of obscurity. Saudi Pharm J. 2018 Feb;26(2):177-190. doi: 10.1016/j.jsps.2017.12.013.

²⁴⁵ Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J. 2018 Feb;26(2):177-190. doi: 10.1016/j.jsps.2017.12.013.

²⁴⁶ Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev. 2020 Jan 1;78(1):65-76. doi: 10.1093/nutrit/nuz027.

²⁴⁷ Cockfield JA, Schafer ZT. Antioxidant defenses: a context-specific vulnerability of cancer cells. Cancers (Basel). 2019 Aug 20;11(8). pii: E1208. doi: 10.3390/cancers11081208.

²⁴⁸ Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J. 2018 Feb;26(2):177-190. doi: 10.1016/j.jsps.2017.12.013.

²⁴⁹ Gedlicka C, Scheithauer W, Schüll B, Kornek GV. Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. *J* Clin Oncol. 2002;20(15):3359–3361. doi:10.1200/JCO.2002.99.502.

²⁵⁰ Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170-8. Review. PMID: 25496272.

²⁵¹ Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel).
 2019 Jun 4;11(6). pii: E770. doi: 10.3390/cancers11060770.

²⁵² San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁵³ Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J, Fais S. Out of Warburg effect: an effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol. 2017 Apr;43:134-138. doi: 10.1016/j.semcancer.2017.01.005.

²⁵⁴ Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel).
 2019 Jun 4;11(6). pii: E770. doi: 10.3390/cancers11060770.

²⁵⁵ Oliveira CLP, Mattingly S, Schirrmacher R, Sawyer MB, Fine EJ, Prado CM. A nutritional perspective of ketogenic diet in cancer: A narrative review. J Acad Nutr Diet. 2018 Apr;118(4):668-688. doi: 10.1016/j.jand.2017.02.003.

²⁵⁶ Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014 Mar;35(3):515-27. doi: 10.1093/carcin/bgt480.

²⁵⁷ Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014 Mar;35(3):515-27. doi: 10.1093/carcin/bgt480.

²⁵⁸ Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J, Fais S. Out of Warburg effect: an effective cancer treatment targeting the tumour specific metabolism and dysregulated pH. Semin Cancer Biol. 2017 Apr;43:134-138. doi: 10.1016/j.semcancer.2017.01.005.

²⁵⁹ Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016 Jan;73(2):377-92. doi:10.1007/s00018-015-2070-4.

²⁶⁰ Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016 Jan;73(2):377-92. doi:10.1007/s00018-015-2070-4.

²⁶¹ Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016 Jan;73(2):377-92. doi:10.1007/s00018-015-2070-4.

²⁶² Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.

²⁶³ Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem. 2015 Aug 26;6(3):148-61. doi: 10.4331/wjbc.v6.i3.148.

²⁶⁴ Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumour cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁶⁵ Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.

²⁶⁶ Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017 May 25;8(34):57813-57825. doi: 10.18632/oncotarget.18175.

²⁶⁷ Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016 Jan;73(2):377-92. doi:10.1007/s00018-015-2070-4.

²⁶⁸ Cutruzzolà F, Giardina G, Marani M, Macone A, Paiardini A, Rinaldo S, et al. Glucose metabolism in the progression of prostate cancer. Front Physiol. 2017 Feb 21;8:97. doi: 10.3389/fphys.2017.00097.

²⁶⁹ Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011 Feb;38(1):55-69. doi: 10.1053/j.seminoncol.2010.11.012.

²⁷⁰ Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁷¹ Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁷² San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁷³ San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁷⁴ San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁷⁵ Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017 May 25;8(34):57813-57825. doi: 10.18632/oncotarget.18175.

²⁷⁶ Zhao L, Mao Y, Zhao Y, Cao Y, Chen X. Role of multifaceted regulators in cancer glucose metabolism and their clinical significance. Oncotarget. 2016 May 24;7(21):31572-85. doi: 10.18632/oncotarget.7765.
 ²⁷⁷ San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁷⁸ San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017 Feb 1;38(2):119-133. doi: 10.1093/carcin/bgw127.

²⁷⁹ Zhao L, Mao Y, Zhao Y, Cao Y, Chen X. Role of multifaceted regulators in

cancer glucose metabolism and their clinical significance. Oncotarget. 2016 May 24;7(21):31572-85. doi: 10.18632/oncotarget.7765.

²⁸⁰ Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009 Dec;8(23):3984-4001. Epub 2009 Dec 5. PMID: 19923890.

²⁸¹ Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017 May 25;8(34):57813-57825. doi: 10.18632/oncotarget.18175.

²⁸² Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁸³ Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans. 2016 Oct 15;44(5):1499-1505. Review. PMID: 27911732.

²⁸⁴ Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁸⁵ Olson KA, Schell JC, Rutter J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci. 2016 Mar;41(3):219-230. doi: 10.1016/j.tibs.2016.01.002.

²⁸⁶ Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁸⁷ Chen X^S, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016 Aug;37(8):1013-9. doi: 10.1038/aps.2016.47.

²⁸⁸ Michalopoulou E, Bulusu V, Kamphorst JJ. Metabolic scavenging by cancer cells: when the going gets tough, the tough keep eating. Br J Cancer. 2016 Sep 6;115(6):635-40. doi: 10.1038/bjc.2016.256.

²⁸⁹ Cutruzzolà F, Giardina G, Marani M, Macone A, Paiardini A, Rinaldo S, Paone A. Glucose metabolism in the progression of prostate cancer. Front Physiol. 2017 Feb 21;8:97. doi: 10.3389/fphys.2017.00097.

²⁹⁰ Michalopoulou E, Bulusu V, Kamphorst JJ. Metabolic scavenging by cancer cells: when the going gets tough, the tough keep eating. Br J Cancer. 2016 Sep 6;115(6):635-40. doi: 10.1038/bjc.2016.256.

²⁹¹ Hoerner CR, Chen VJ, Fan AC. The 'Achilles heel' of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy. Kidney Cancer. 2019 Feb 5;3(1):15-29. doi: 10.3233/KCA-180043.

²⁹² Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel). 2019 Jun 4;11(6). pii: E770. doi: 10.3390/cancers11060770.

²⁹³ Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel). 2019 Jun 4;11(6). pii: E770. doi: 10.3390/cancers11060770.

²⁹⁴ Jolfaie NR, Mirzaie S, Ghiasvand R, Askari G, Miraghajani M. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci. 2015 Sep;20(9):910-8. doi:10.4103/1735-1995.170634.

²⁹⁵ Sayles C, Hickerson SC, Bhat RR, Hall J, Garey KW, Trivedi MV. Oral glutamine in preventing treatmentrelated mucositis in adult patients with cancer: a systematic review. Nutr Clin Pract. 2016 Apr;31(2):171-9. doi: 10.1177/0884533615611857.

²⁹⁶ Amara S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann Pharmacother. 2008 Oct;42(10):1481-5. doi: 10.1345/aph.1L179.

²⁹⁷ Jolfaie NR, Mirzaie S, Ghiasvand R, Askari G, Miraghajani M. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci. 2015 Sep;20(9):910-8. doi:10.4103/1735-1995.170634.

²⁹⁸ Jolfaie NR, Mirzaie S, Ghiasvand R, Askari G, Miraghajani M. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci. 2015 Sep;20(9):910-8. doi:10.4103/1735-1995.170634.

²⁹⁹ Sayles C, Hickerson SC, Bhat RR, Hall J, Garey KW, Trivedi MV. Oral glutamine in preventing treatmentrelated mucositis in adult patients with cancer: a systematic review. Nutr Clin Pract. 2016 Apr;31(2):171-9. doi: 10.1177/0884533615611857.

³⁰⁰ Amara S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann Pharmacother. 2008 Oct;42(10):1481-5. doi: 10.1345/aph.1L179.

³⁰¹ Teixeira FJ, Santos HO, Howell SL, Pimentel GD. Whey protein in cancer therapy: A narrative review. Pharmacol Res. 2019 Jun;144:245-256. doi: 10.1016/j.phrs.2019.04.019.

³⁰² Zhang M, Di Martino JS, Bowman RL, Campbell NR, Baksh SC, Simon-Vermot T, et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 2018 Aug;8(8):1006-1025. doi: 10.1158/2159-8290.CD-17-1371.

³⁰³ Jones CL, Stevens BM, D'Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018 Nov 12;34(5):724-740.e4. doi: 10.1016/j.ccell.2018.10.005.

³⁰⁴ Reczek CR, Chandel NS. ROS promotes cancer cell survival through calcium signaling. Cancer Cell. 2018 Jun 11;33(6):949-951. doi: 10.1016/j.ccell.2018.05.010.

³⁰⁵ Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010 May;44(5):479-96. doi: 10.3109/10715761003667554.

³⁰⁶ Cockfield JA, Schafer ZT. Antioxidant defenses: a context-specific vulnerability of cancer cells. Cancers (Basel). 2019 Aug 20;11(8). pii: E1208. doi: 10.3390/cancers11081208.

³⁰⁷ Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010 May;44(5):479-96. doi: 10.3109/10715761003667554.

³⁰⁸ Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010 May;44(5):479-96. doi: 10.3109/10715761003667554.

³⁰⁹ Cancer Council Australia. Nutrition and cancer [Internet]. Cancer Council Australia; Sydney, NSW: 2019 Jun [cited 2020 Mar 23]. Available from: <u>https://www.cancerwa.asn.au/resources/2019-03-19-Nutrition-</u> and-Cancer.pdf

³¹⁰ Cancer Council Australia. Nutrition and cancer [Internet]. Cancer Council Australia; Sydney, NSW: 2019 Jun [cited 2020 Mar 23]. Available from: <u>https://www.cancerwa.asn.au/resources/2019-03-19-Nutrition-and-Cancer.pdf</u>

³¹¹ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³¹² Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017 Aug;34(8):132. doi: 10.1007/s12032-017-0991-5.

³¹³ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³¹⁴ Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017 Aug;34(8):132. doi: 10.1007/s12032-017-0991-5.

³¹⁵ Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017 Aug;34(8):132. doi: 10.1007/s12032-017-0991-5.

³¹⁶ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³¹⁷ Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017 Aug;34(8):132. doi: 10.1007/s12032-017-0991-5.

³¹⁸ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³¹⁹ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³²⁰ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³²¹ Klement RJ, Brehm N, Sweeney RA. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol. 2020 Jan 11;37(2):14. doi: 10.1007/s12032-020-1337-2.

³²² van der Louw EJTM, Olieman JF, van den Bemt PMLA, Bromberg JEC, Oomen-de Hoop E, Neuteboom RF, Catsman-Berrevoets CE, et al. Ketogenic diet treatment as adjuvant to standard treatment of glioblastoma multiforme: a feasibility and safety study. Ther Adv Med Oncol. 2019 Jun 21;11:1758835919853958. doi: 10.1177/1758835919853958.

³²³ Elsakka AMA, Bary MA, Abdelzaher E, Elnaggar M, Kalamian M, Mukherjee P, et al. Management of glioblastoma multiforme in a patient treated with ketogenic metabolic therapy and modified standard of care: a 24-month follow-up. Front Nutr. 2018 Mar 29;5:20. doi: 10.3389/fnut.2018.00020.

³²⁴ Seyfried TN, Shelton L, Arismendi-Morillo G, Kalamian M, Elsakka A, Maroon J, et al. Provocative question: should ketogenic metabolic therapy become the standard of care for glioblastoma? Neurochem Res. 2019 Oct;44(10):2392-2404. doi: 10.1007/s11064-019-02795-4.

³²⁵ Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014 Mar;35(3):515-27. doi: 10.1093/carcin/bgt480.

³²⁶ Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014 Mar;35(3):515-27. doi: 10.1093/carcin/bgt480.

³²⁷ Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013 Feb;22(2):286-94. doi: 10.1158/1055-9965.EPI-12-1060.

³²⁸ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³²⁹ Orlich MJ, Singh PN, Sabaté J, Fan J, Sveen L, Bennett H, et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med. 2015 May;175(5):767-76. doi: 10.1001/jamainternmed.2015.59.

³³⁰ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³³¹ Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017 Nov 22;57(17):3640-3649. doi: 10.1080/10408398.2016.1138447.

³³² Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³³³ McCarty MF. Plant-based diets relatively low in bioavailable phosphate and calcium may aid prevention and control of prostate cancer by lessening production of fibroblast growth factor 23. Med Hypotheses. 2017 Feb;99:68-72. doi: 10.1016/j.mehy.2017.01.001.

³³⁴ McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014 Sep;83(3):365-71. doi: 10.1016/j.mehy.2014.06.014.

³³⁵ Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017 Nov 22;57(17):3640-3649. doi: 10.1080/10408398.2016.1138447.

³³⁶ Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014 Jul;100 Suppl 1:378S-85S. doi: 10.3945/ajcn.113.071266.

³³⁷ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³³⁸ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³³⁹ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³⁴⁰ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³⁴¹ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³⁴² Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³⁴³ Ornish D, Magbanua MJ, Weidner G, Weinberg V, Kemp C, Green C, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8369-74. doi: 10.1073/pnas.0803080105.

³⁴⁴ Orlich MJ, Singh PN, Sabaté J, Fan J, Sveen L, Bennett H, et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med. 2015 May;175(5):767-76. doi: 10.1001/jamainternmed.2015.59.

³⁴⁵ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.
 ³⁴⁶ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet

and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.

³⁴⁷ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.
 ³⁴⁸ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet

and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8. ³⁴⁹ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.

³⁵⁰ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.
 ³⁵¹ Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA. The effect of replacement of methionine by homocysteine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1133-6. PubMed PMID: 4524624.

³⁵² Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA. The effect of replacement of methionine by homocysteine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1133-6. PubMed PMID: 4524624.

 ³⁵³ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.
 ³⁵⁴ Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019 Nov;19(11):625-637. doi: 10.1038/s41568-019-0187-8.

³⁵⁵ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2 6.

³⁵⁶ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2_6.

³⁵⁷ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2
 6.

³⁵⁸ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2
 6.

³⁵⁹ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2_6.

³⁶⁰ Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol. 2019;1866:61-73. doi: 10.1007/978-1-4939-8796-2_6.

³⁶¹ Epner DE, Morrow S, Wilcox M, Houghton JL. Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer. 2002;42(2):158-66. PMID: 12416254.

³⁶² Epner DE, Morrow S, Wilcox M, Houghton JL. Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer. 2002;42(2):158-66. PMID: 12416254.

³⁶³ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁶⁴ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁶⁵ Buono R, Longo VD. Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 2018 Apr;29(4):271-280. doi: 10.1016/j.tem.2018.01.008.

³⁶⁶ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁶⁷ Buono R, Longo VD. Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 2018 Apr;29(4):271-280. doi: 10.1016/j.tem.2018.01.008.

³⁶⁸ de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. J Exp Clin Cancer Res. 2019 May 22;38(1):209. doi: 10.1186/s13046-019-1189-9.

³⁶⁹ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁷⁰ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁷¹ Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁷² Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0.

³⁷³ Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009 Dec 31;1(12):988-1007. PubMed PMID: 20157582; PubMed Central PMCID: PMC2815756.

³⁷⁴ Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of shortterm fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2.

³⁷⁵ de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. J Exp Clin Cancer Res. 2019 May 22;38(1):209. doi: 10.1186/s13046-019-1189-9.

³⁷⁶ Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009 Dec 31;1(12):988-1007. PubMed PMID: 20157582; PubMed Central PMCID: PMC2815756.

³⁷⁷ Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009 Dec 31;1(12):988-1007. PubMed PMID: 20157582; PubMed Central PMCID: PMC2815756.

³⁷⁸ Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009 Dec 31;1(12):988-1007. PubMed PMID: 20157582; PubMed Central PMCID: PMC2815756.

³⁷⁹ Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of shortterm fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2.

³⁸⁰ Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of shortterm fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2.

³⁸¹ Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of shortterm fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2.

³⁸² Clinical Trials.org. Fasting mimicking diet, cancer [Internet]. National Institute of Health: Bethesda; 2020 Mar 1 [cited 2020 Feb 1]. Available from: <u>https://clinicaltrials.gov/ct2/results?cond=Cancer&term=fasting+mimicking+diet&cntry=&state=&city=&d</u> <u>ist=</u>

³⁸³ McLelland J. How to starve cancer. United Kingdom: Agenor Publishing; Nov 10 2018. p. 317.

³⁸⁴ Xu J, Long Y, Ni L, Yuan X, Yu N, Wu R, et al. Anticancer effect of berberine based on experimental animal models of various cancers: a systematic review and meta-analysis. BMC Cancer. 2019 Jun 17;19(1):589. doi: 10.1186/s12885-019-5791-1.

³⁸⁵ Ortiz LM, Lombardi P, Tillhon M, Scovassi Al. Berberine, an epiphany against cancer. Molecules. 2014 Aug 15;19(8):12349-67. doi: 10.3390/molecules190812349.

³⁸⁶ Mortazavi H, Nikfar B, Esmaeili SA, Rafieenia F, Saburi E, Chaichian S, et al. Potential cytotoxic and antimetastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem. 2020 Feb 1;187:111951. doi: 10.1016/j.ejmech.2019.111951.

 ³⁸⁷ Zhang C, Sheng J, Li G, Zhao L, Wang Y, Yang W, et al. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol. 2020 Jan 15;10:1461. doi: 10.3389/fphar.2019.01461.
 ³⁸⁸ Wang Y, Liu Y, Du X, Ma H, Yao J. The anti-cancer mechanisms of berberine: a review. Cancer Manag Res. 2020 Jan 30;12:695-702. doi: 10.2147/CMAR.S242329.

³⁸⁹ Habtemariam S. Recent advances in berberine inspired anticancer approaches: from drug combination to novel formulation technology and derivatization. Molecules. 2020 Mar 20;25(6). pii: E1426. doi: 10.3390/molecules25061426.

³⁹⁰ Hallajzadeh J, Maleki Dana P, Mobini M, Asemi Z, Mansournia MA, Sharifi M, et al. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol. 2020 Apr 17;37(6):49. doi: 10.1007/s12032-020-01367-9.

³⁹¹ Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F,et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017 Feb;36(1):11-48. doi: 10.1016/j.clnu.2016.07.015.

³⁹² Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep 25;17(10):620-632. doi: 10.1038/nrc.2017.78.

³⁹³ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁴ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁵ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular ,echanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁶ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁷ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁸ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

³⁹⁹ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴⁰⁰ Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep 25;17(10):620-632. doi: 10.1038/nrc.2017.78.

⁴⁰¹ Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep 25;17(10):620-632. doi: 10.1038/nrc.2017.78.

⁴⁰² Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment, Cell Metab. 2018 Jan 9:27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴⁰³ Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep 25;17(10):620-32. doi: 10.1038/nrc.2017.78.

⁴⁰⁴ Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep 25;17(10):620-32. doi: 10.1038/nrc.2017.78.

⁴⁰⁵ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴⁰⁶ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴⁰⁷ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴⁰⁸ Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017 Sep25;17(10):620-32. doi: 10.1038/nrc.2017.78.

⁴⁰⁹ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴¹⁰ Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018 Jan 9;27(1):10-21. doi: 10.1016/j.cmet.2017.09.015.

⁴¹¹ Breastcancer.org. Experts update exercise guidelines for people treated for cancer [internet]. Ardmore, PA: Breastcancer.org; 2020 [updated 2019 October 23; cited 2020 April 28]. Available from: https://www.breastcancer.org/research-news/updated-exercise-guidelines-for-cancer

⁴¹² COSA Exercise and Cancer Group Executive Committee. Clinical Oncology Society of Australia position statement on exercise in cancer care. Med J Aust. 2019 Jan;210(1):54.e1. doi: 10.5694/mja2.12039.

⁴¹³ Liu L, Ancoli-Israel S. Sleep disturbances in cancer. Psychiatr Ann. 2008 Sep 1;38(9):627-34. doi: 10.3928/00485713-20080901-01.

⁴¹⁴ Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013;119:221-82. doi: 10.1016/B978-0-12-396971-2.00009-9.

⁴¹⁵ Menegaux F, Truong T, Anger A, Cordina-Duverger E, Lamkarkach F, Arveux P, et al. Night work and breast cancer: a population-based case-control study in France (the CECILE study). Int J Cancer. 2013 Feb 15;132(4):924-31. doi: 10.1002/ijc.27669.

⁴¹⁶ Erren TC, Morfeld P, Foster RG, Reiter RJ, Groß JV, Westermann IK. Sleep and cancer: synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int. 2016;33(4):325-50. doi: 10.3109/07420528.2016.1149486.

⁴¹⁷ Menegaux F, Truong T, Anger A, Cordina-Duverger E, Lamkarkach F, Arveux P, et al. Night work and breast cancer: a population-based case-control study in France (the CECILE study). Int J Cancer. 2013 Feb 15;132(4):924-31. doi: 10.1002/ijc.27669.

⁴¹⁸ Menegaux F, Truong T, Anger A, Cordina-Duverger E, Lamkarkach F, Arveux P, et al. Night work and breast cancer: a population-based case-control study in France (the CECILE study). Int J Cancer. 2013 Feb 15;132(4):924-31. doi: 10.1002/ijc.27669.

⁴¹⁹ Behrens T, Rabstein S, Wichert K, Erbel R, Eisele L, Arendt M, et al. Shift work and the incidence of prostate cancer: a 10-year follow-up of a German population-based cohort study. Scand J Work Environ Health. 2017 Nov 1;43(6):560-68. doi: 10.5271/sjweh.3666.

⁴²⁰ Erren TC, Morfeld P, Foster RG, Reiter RJ, Groß JV, Westermann IK. Sleep and cancer: synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int. 2016;33(4):325-50. doi: 10.3109/07420528.2016.1149486.

⁴²¹ Kaczor T. An overview of melatonin and breast cancer. Nat Med J. 2010;2(2).

⁴²² Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019 Apr 30;17(4):e3000228. doi: 10.1371/journal.pbio.3000228.

⁴²³ Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019 Apr 30;17(4):e3000228. doi: 10.1371/journal.pbio.3000228.

⁴²⁴ Erren TC, Morfeld P, Foster RG, Reiter RJ, Groß JV, Westermann IK. Sleep and cancer: synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int. 2016;33(4):325-50. doi: 10.3109/07420528.2016.1149486.

⁴²⁵ Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013;119:221-82. doi: 10.1016/B978-0-12-396971-2.00009-9.

⁴²⁶ Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013;119:221-82. doi: 10.1016/B978-0-12-396971-2.00009-9.

⁴²⁷ Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013;119:221-82. doi: 10.1016/B978-0-12-396971-2.00009-9.

⁴²⁸ Garcia-Prieto P. Pyscho-oncology: A patient's view. Recent Results Cancer Res. 2018;210:57-66. doi: 10.1007/978-3-319-643010-6_4.

⁴²⁹ Lang-Rollin I, Berberich G. Pyscho-oncology. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

⁴³⁰ Lang-Rollin I, Berberich G. Pyscho-oncology. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

⁴³¹ NIH National Cancer Institute [Internet]. Bethesda MD: National Cancer Institute; 2019. Adjustment to cancer: anxiety and distress (PDQ®) – health professional version. 2019 Mar 6 [cited 2020 Mar 12]. Available from: <u>https://www.cancer.gov/about-cancer/coping/feelings/anxiety-distress-hp-pdq</u>

⁴³² Garcia-Prieto P. Pyscho-oncology: A patient's view. Recent Results Cancer Res. 2018;210:57-66. doi: 10.1007/978-3-319-643010-6 4.

⁴³³ Garcia-Prieto P. Pyscho-oncology: A patient's view. Recent Results Cancer Res. 2018;210:57-66. doi: 10.1007/978-3-319-643010-6_4.

⁴³⁴ Schwarz R. Pyschosocial factors in carcinogenesis: on the problem of the so-called cancer-prone personality. Psychother Psychosom Med Psychol. 1993 Jan;43(1):1-9. PMID: 8441795.

⁴³⁵ Schwarz R. Pyschosocial factors in carcinogenesis: on the problem of the so-called cancer-prone personality. Psychother Psychosom Med Psychol. 1993 Jan;43(1):1-9. PMID: 8441795.

⁴³⁶ Lang-Rollin I, Berberich G. Psycho-oncology. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

⁴³⁷ Kubler-Ross E. On death and dying. New York, NY: Simon & Schuster; 1969.

⁴³⁸ Renz M, Koeberle D, Cerny T, Strasser F. Between utter despair and essential hope. J Clin Oncol. 2009 Jan 1;27(1):146-9. doi: 10.1200/JCO.2008.19.2203.

⁴³⁹ Kubler-Ross E. On death and dying. New York, NY: Simon & Schuster; 1969.

⁴⁴⁰ Renz M, Koeberle D, Cerny T, Strasser F. Between utter despair and essential hope. J Clin Oncol. 2009 Jan 1;27(1):146-9. doi: 10.1200/JCO.2008.19.2203.

⁴⁴¹ Renz M, Koeberle D, Cerny T, Strasser F. Between utter despair and essential hope. J Clin Oncol. 2009 Jan 1;27(1):146-9. doi: 10.1200/JCO.2008.19.2203.

⁴⁴² Renz M, Koeberle D, Cerny T, Strasser F. Between utter despair and essential hope. J Clin Oncol. 2009 Jan 1;27(1):146-9. doi: 10.1200/JCO.2008.19.2203.

⁴⁴³ NIH National Cancer Institute [Internet]. Bethesda MD: National Cancer Institute; 2019. Adjustment to cancer: anxiety and distress (PDQ®) – health professional version. 2019 Mar 6 [cited 2020 Mar 12]. Available from: <u>https://www.cancer.gov/about-cancer/coping/feelings/anxiety-distress-hp-pdq</u>

⁴⁴⁴ NIH National Cancer Institute [Internet]. Bethesda MD: National Cancer Institute; 2019. Adjustment to cancer: anxiety and distress (PDQ®) – health professional version. 2019 Mar 6 [cited 2020 Mar 12]. Available from: <u>https://www.cancer.gov/about-cancer/coping/feelings/anxiety-distress-hp-pdq</u>

⁴⁴⁵ Lang-Rollin I, Berberich G. Psycho-oncology. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

⁴⁴⁶ Riba MB, Donovan KA, Andersen B, Braun I, Breitbart WS, Brewer BW, et al. Distress management, version
 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw.2019 Oct 1;17(10):1229 49. doi: 10.6004/jnccn.2019.0048.

⁴⁴⁷ NIH National Cancer Institute [Internet]. Bethesda MD: National Cancer Institute; 2019. Adjustment to cancer: anxiety and distress (PDQ®) – health professional version. 2019 Mar 6 [cited 2020 Mar 12]. Available from: <u>https://www.cancer.gov/about-cancer/coping/feelings/anxiety-distress-hp-pdq</u>

⁴⁴⁸ Lynch J, Goodhart F, Saunders Y, O'Connor SJ. Screening for psychological distress in patients with lung cancer: results of a clinical audit evaluating the use of the patient Distress Thermometer. Support Care Cancer. 2010 Feb;19(2):193-202. doi: 10.1007/s00520-009-0799-8.

⁴⁴⁹ Suvarna B, Suvarna A, Phillips R, Juster RP, McDermott B, Samyai Z. Health risk behaviours and allostatic load: A systematic review. Neurosci Biobehah Rev. 2020 Jan;108;694-711. doi: 10.1016/j.neurobiorev.2019.12.020.

⁴⁵⁰ Antoni MH, Lutgendorf SK, Blomberg B, Carver CS, Lechner S, Diaz A, et al. Cognitive-behavioural stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry. 2012 Feb 15;71(4):366-72. doi: 10.1016/j.biopsych.2011.10.007.

⁴⁵¹ Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, et al. A randomised controlled trial of cognitive behavioural stress management in cancer: survival and recurrence at 11-year follow up. Breast Cancer Res Treat. 2015 Nov;154(2):319-28. doi: 10.1007/s10549-015-3626-6.

⁴⁵² Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, et al. A randomised controlled trial of cognitive behavioural stress management in cancer: survival and recurrence at 11-year follow up. Breast Cancer Res Treat. 2015 Nov;154(2):319-28. doi: 10.1007/s10549-015-3626-6.

⁴⁵³ Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, et al. A randomised controlled trial of cognitive behavioural stress management in cancer: survival and recurrence at 11-year follow up. Breast Cancer Res Treat. 2015 Nov;154(2):319-28. doi: 10.1007/s10549-015-3626-6.

⁴⁵⁴ Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, et al. A randomised controlled trial of cognitive behavioural stress management in cancer: survival and recurrence at 11-year follow up. Breast Cancer Res Treat. 2015 Nov;154(2):319-28. doi: 10.1007/s10549-015-3626-6.

⁴⁵⁵ Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, et al. A randomised controlled trial of cognitive behavioural stress management in cancer: survival and recurrence at 11-year follow up. Breast Cancer Res Treat. 2015 Nov;154(2):319-28. doi: 10.1007/s10549-015-3626-6.

⁴⁵⁶ Antoni MH, Dhabhar FS. The impact of psychosocial stress and stress management on immune responses in patients with cancer. Cancer. 2019 May 1;125(9):1417-31. doi: 10.1002/cncr.31943.

⁴⁵⁷ Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: A phase II randomised trial. Clin Cancer Res. 2019 Nov 21. doi: 10.1158/1078-0432.CCR-19-2641.

⁴⁵⁸ Barre PV, Padmaja G, Rana S, Tiamongla. Stress and quality of life in cancer patients: medical and psychological intervention. Indian J Psychol Med. 2018 May-Jun;40(3):232-238. doi: 10.4103/ijpsym_512_17.

⁴⁵⁹ Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: A phase II randomised trial. Clin Cancer Res. 2019 Nov 21. doi: 10.1158/1078-0432.CCR-19-2641.

⁴⁶⁰ Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, et al. Clinical impact of selective and nonselective beta blockers on survival in patients with ovarian cancer. Cancer. 2015 Oct 1;121:(19):3444-51. doi: 10.1002/cncr.29392.

⁴⁶¹ Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, et al. Clinical impact of selective and nonselective beta blockers on survival in patients with ovarian cancer. Cancer. 2015 Oct 1;121:(19):3444-51. doi: 10.1002/cncr.29392.

⁴⁶² Garcia-Prieto P. Pyscho-oncology: A patient's view. Recent Results Cancer Res. 2018;210:57-66. doi: 10.1007/978-3-319-643010-6 4.

⁴⁶³ Carlson Le, Speca M, Faris P, Patel KD. One year pre-post intervention follow up of psychological, immune, endocrine and blood pressure outcomes of mindfulness-based stress reduction (MBSR) in breast and prostate cancer outpatients. Brain Behav Immun. 2007 Nov;21(8):1038-49. doi: 10.1016/j.bbi.2007.04.002.

⁴⁶⁴ Carlson Le, Speca M, Faris P, Patel KD. One year pre-post intervention follow up of psychological, immune, endocrine and blood pressure outcomes of mindfulness-based stress reduction (MBSR) in breast and prostate cancer outpatients. Brain Behav Immun. 2007 Nov;21(8):1038-49. doi: 10.1016/j.bbi.2007.04.002.

⁴⁶⁵ Carlson Le, Speca M, Faris P, Patel KD. One year pre-post intervention follow up of psychological, immune, endocrine and blood pressure outcomes of mindfulness-based stress reduction (MBSR) in breast and prostate cancer outpatients. Brain Behav Immun. 2007 Nov;21(8):1038-49. doi: 10.1016/j.bbi.2007.04.002.

⁴⁶⁶ Van de Wal M, Thewes B, Gielissen M, Speckens A, Prins J. Efficacy of blended cognitive behaviour therapy for high fear of recurrence in breast, prostate, and colorectal cancer survivors: The SWORD study, a randomised controlled trial. J Clin Oncol. 2017 Jul 1;35(19):2173-2183. doi: 10.1200/JCO.2016.70.5301.

⁴⁶⁷ Simard S, Thewes B, Humphris G, Dixon M, Hayden C, Mireskandari S, et al. Fear of cancer recurrence in adult cancer survivors: a systematic review of quantitative studies. J Cancer Surviv. 2013 Sep;7(3):300-22. doi: 10.1007/s11764-013-0272-z.

⁴⁶⁸ Van de Wal M, Thewes B, Gielissen M, Speckens A, Prins J. Efficacy of blended cognitive behaviour therapy for high fear of recurrence in breast, prostate, and colorectal cancer survivors: The SWORD study, a randomised controlled trial. J Clin Oncol. 2017 Jul 1;35(19):2173-83. doi: 10.1200/JCO.2016.70.5301.
⁴⁶⁹ Gil KM, Mishel MH, Germino B, Porter LS, Carlton-LaNey I, Belyea M. Uncertainty management intervention for older African American and Caucasian long-term breast cancer survivors. J Psychosoc Oncol. 2005;23(2-3):3-21. doi: 10.1300/j077v23n02 02.

REFERENCES

⁴⁷⁰ Hamblin MR, Nelson ST, Strahan JR. Photobiomodulation and cancer: what is the truth? Photomed Laser Surg. 2018 May;36(5):241-45. doi: 10.1089/pho.2017.4401.

⁴⁷¹ Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of agerelated macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018 Aug;46(6):670-86. doi: 10.1111/ceo.13121.

⁴⁷² Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of agerelated macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018 Aug;46(6):670-86. doi: 10.1111/ceo.13121.

⁴⁷³ Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of agerelated macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018 Aug;46(6):670-86. doi: 10.1111/ceo.13121.

⁴⁷⁴ Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun RJ, et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer. 2019 Oct;27(10):3969-83. doi: 10.1007/s00520-019-04890-2.

⁴⁷⁵ Hamblin MR, Nelson ST, Strahan JR. Photobiomodulation and cancer: what is the truth? Photomed Laser Surg. 2018 May;36(5):241-45. doi: 10.1089/pho.2017.4401.

⁴⁷⁶ Hamblin MR, Nelson ST, Strahan JR. Photobiomodulation and cancer: what is the truth? Photomed Laser Surg. 2018 May;36(5):241-45. doi: 10.1089/pho.2017.4401.

⁴⁷⁷ Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy – an update. Dose Response. 2011;9(4):602-18. doi: 10.2203/dose-response.11-009.

⁴⁷⁸ Antunes HS, Herchenhorn D, Small IA, Araujo CMM, Viegas CMP, de Assis Ramos G, et al. Long-term survival of a randomised phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol. 2017 Aug;71:11-15. doi: 10.1016/j.oraloncology.2017.05.018.

⁴⁷⁹ Antunes HS, Herchenhorn D, Small IA, Araujo CMM, Viegas CMP, de Assis Ramos G, et al. Long-term survival of a randomised phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol. 2017 Aug;71:11-15. doi: 10.1016/j.oraloncology.2017.05.018.

⁴⁸⁰ Antunes HS, Herchenhorn D, Small IA, Araujo CMM, Viegas CMP, de Assis Ramos G, et al. Long-term survival of a randomised phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol. 2017 Aug;71:11-15. doi: 10.1016/j.oraloncology.2017.05.018.

⁴⁸¹ Pires Marques EC, Lopes FP, Nascimento IC, Morelli J, Pereira MV, Meiken VMM, et al. Photobiomodulation and photodynamic therapy for the treatment of oral mucositis in patients with cancer. Photodiagnosis Photodyn Ther. 2020 Mar;29:101621. doi: 10.1016/j.pdpdt.2019.101621.

⁴⁸² Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742-53. doi:10.1016/j.ctrv.2015.05.009.

⁴⁸³ Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742-53. doi:10.1016/j.ctrv.2015.05.009.

⁴⁸⁴ Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30(8):531-39. doi:10.3109/02656736.2014.968640.

⁴⁸⁵ Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30(8):531-39. doi:10.3109/02656736.2014.968640.

⁴⁸⁶ Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30(8):531-39. doi:10.3109/02656736.2014.968640.

⁴⁸⁷ Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia. 2018;34(8):1316-28. doi:10.1080/02656736.2018.1430867.

⁴⁸⁸ Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742-53. doi:10.1016/j.ctrv.2015.05.009.

⁴⁸⁹ Zhao C, Dai C, Chen X. Whole-body hyperthermia combined with hyperthermic intraperitoneal chemotherapy for the treatment of stage IV advanced gastric cancer. Int J Hyperthermia. 2012;28(8):735-41. doi:10.3109/02656736.2012.734894.

⁴⁹⁰ Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia. 2018;34(8):1316-28. doi:10.1080/02656736.2018.1430867.

REFERENCES

⁴⁹¹ Kang CD, Kim SH. Effects of regional hyperthermia with moderate temperature on cancer treatment. J Life Sci. 2016 Sep;26(9):1088-96. doi: 10.5352/JLS.2016.26.9.1088.

⁴⁹² Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol. 2016 Sep;33(9):101. doi: 10.1007/s12032-016-0814-0.

⁴⁹³ Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol. 2016 Sep;33(9):101. doi: 10.1007/s12032-016-0814-0.

⁴⁹⁴ Reijmen E, Vannucci L, De Couck M, De Grève J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett. 2018 Oct;202:38-43. doi: 10.1016/j.imlet.2018.07.006.

⁴⁹⁵ Reijmen E, Vannucci L, De Couck M, De Grève J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett. 2018 Oct;202:38-43. doi: 10.1016/j.imlet.2018.07.006.

⁴⁹⁶ Reijmen E, Vannucci L, De Couck M, De Grève J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett. 2018 Oct;202:38-43. doi: 10.1016/j.imlet.2018.07.006.

⁴⁹⁷ Serhan CN, de la Rosa X, Jouvene CC. Cutting Edge: Human vagus produces specialised proresolving mediators of inflammation with electrical stimulation reducing proinflammatory eicosanoids. J Immunol. 2018 Dec 1;201(11):3161-65. doi: 10.4049/jimmunol.1800806.

⁴⁹⁸ van Gorkom GNY, Lookermans EL, Van Elssen CHMJ, Bos GMJ. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: a systematic review. Nutrients. 2019 Apr 28;11(5). pii: E977. doi: 10.3390/nu11050977.

⁴⁹⁹ Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, et al. Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol. 2019 Jan;29(1):25-32. doi: 10.1016/j.semradonc.2018.10.006.

⁵⁰⁰ Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, et al. Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol. 2019 Jan;29(1):25-32. doi: 10.1016/j.semradonc.2018.10.006.

⁵⁰¹ Carr AC, Cook J. Intravenous vitamin C for cancer therapy – identifying the current gaps in our knowledge. Front Physiol. 2018 Aug 23;9:1182. doi: 10.3389/fphys.2018.01182.

⁵⁰² van Gorkom GNY, Lookermans EL, Van Elssen CHMJ, Bos GMJ. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: a systematic review. Nutrients. 2019 Apr 28;11(5). pii: E977. doi: 10.3390/nu11050977.

⁵⁰³ Ou J, Zhu X, Zhang H, Du Y, Chen P, Wang J, et al. A retrospective study of gemcitabine and carboplatin with or without intravenous vitamin C on patients with advanced triple-negative breast cancer. Integr Cancer Ther. 2020 Jan-Dec;19:1534735419895591. doi: 10.1177/1534735419895591.

⁵⁰⁴ Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;57-65. doi:10.14694/EdBook_AM.2015.35.57.

⁵⁰⁵ Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;57-65. doi:10.14694/EdBook_AM.2015.35.57.

⁵⁰⁶ Fitzgerald A, Berentson-Shaw J. Thermography as a screening and diagnostic tool: a systematic review. N Z Med J. 2012 Mar 9;125(1351):80-91. PMID: 22426613.

⁵⁰⁷ Sarigoz T, Ertan T, Topuz O, Sevim Y, Cihan Y. Role of digital infrared thermal imaging in the diagnosis of breast mass: a pilot study: diagnosis of breast mass by thermography. Infrared Phys Techn. 2018 Jun 1;91:214-9. doi: 10.1016/j.infrared.2018.04.019.

⁵⁰⁸ Sarigoz T, Ertan T, Topuz O, Sevim Y, Cihan Y. Role of digital infrared thermal imaging in the diagnosis of breast mass: a pilot study: diagnosis of breast mass by thermography. Infrared Phys Techn. 2018 Jun 1;91:214-9. doi: 10.1016/j.infrared.2018.04.019.

⁵⁰⁹ Fitzgerald A, Berentson-Shaw J. Thermography as a screening and diagnostic tool: a systematic review. N Z Med J. 2012 Mar 9;125(1351):80-91. PMID: 22426613.

⁵¹⁰ Fitzgerald A, Berentson-Shaw J. Thermography as a screening and diagnostic tool: a systematic review. N Z Med J. 2012 Mar 9;125(1351):80-91. PMID: 22426613.

⁵¹¹ Fitzgerald A, Berentson-Shaw J. Thermography as a screening and diagnostic tool: a systematic review. N Z Med J. 2012 Mar 9;125(1351):80-91. PMID: 22426613.

⁵¹² Sarigoz T, Ertan T, Topuz O, Sevim Y, Cihan Y. Role of digital infrared thermal imaging in the diagnosis of breast mass: a pilot study: diagnosis of breast mass by thermography. Infrared Phys Techn. 2018 Jun 1;91:214-9. doi: 10.1016/j.infrared.2018.04.019.

⁵¹³ Omranipour R, Kazemian A, Alipour S, Najafi M, Alidoosti M, Navid M, et al. Comparison of the accuracy of thermography and mammography in the detection of breast cancer. Breast Care (Basel). 2016;11(4):260-264. doi:10.1159/000448347.

REFERENCES

⁵¹⁴ Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol. 2019 May 8;53(2):131-47. doi:10.2478/raon-2019-0024.

⁵¹⁵ Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-1209. doi:10.1056/NEJMoa1213261.

⁵¹⁶ Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-1209. doi:10.1056/NEJMoa1213261.

⁵¹⁷ Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129-44. doi:10.1038/nrclinonc.2013.253.
 ⁵¹⁸ Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating

^{31°} Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol. 2019 May 8;53(2):131-47. doi:10.2478/raon-2019-0024.

⁵¹⁹ Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129-44. doi:10.1038/nrclinonc.2013.253.

⁵²⁰ Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129-44. doi:10.1038/nrclinonc.2013.253.

⁵²¹ Cree IA, Uttley L, Buckley Woods H, Kikiuchi H, Reiman A, Harnan S, et al. The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review. BMC Cancer. 2017 Oct 23;17(1):697. doi:10.1186/s12885-017-3693-7.

⁵²² Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-1209. doi:10.1056/NEJMoa1213261.

⁵²³ Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129-44. doi:10.1038/nrclinonc.2013.253.

⁵²⁴ Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-1209. doi:10.1056/NEJMoa1213261.

⁵²⁵ Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129-44. doi:10.1038/nrclinonc.2013.253.

ABBREVIATIONS

5-FU – 5-flurorouracil	HSCT – Haematopoietic stem cell transplants
a7 nAChR – a7 subunit of the nicotinic AChR	Hsp – Heat shock protein
ACh – Acetylcholine	IGF – Insulin-like growth factor
ADRB1 – Adrenergic beta-1 receptor	IgG – Immunoglobulin G
AHCC™ – Active hexose correlated compound	IL – Interleukin
AO – Antioxidants	INF – Interferon
ALT – Alanine transferase	IV – Intravenous
AscH – Ascorbic acid	IVC – Intravenous vitamin C
AST – Aspartate aminotransferase	KD – Ketogenic diets
ATP – Adenosine triphosphate	LGG® – Lactobacillus rhamnosus (LGG®)
bCBT – Blended cognitive behavioural therapy	LLLT – Low-level laser therapy
BP – Blood pressure	LSC – Leukaemia stem cells
CAF – Cancer associated fibroblasts	MBSR – Mindfulness-based stress reduction
CAU – Care as usual	MCP – Meaning centred psychotherapy
CBSM – Cognitive behavioural stress management	MCT – Monocarboxylate transporter
CBT – Cognitive behavioural therapy	MHC I – Major histocompatibility complex
CFU – Colony forming units	MR – Methionine restriction
CIPN – Chemotherapy induced peripheral neuropathy	NF-κB – Nuclear factor kappa-light-chain-enhancer of activated
CML – Chronic myeloid leukaemia	B cells
CSC – Cancer stem cells	NIR – Near-infrared light
CTC – Circulating tumour cell	NK – Natural killer
ctDNA – Circulating tumour derived DNA	NO – Nitric oxide
CTLA-4 – Cytotoxic T-lymphocyte-associated protein 4	NSAIDs – Non-steroidal anti-inflammatory drugs
DC – Dendritic cells	OM – Oral mucositis
DC1 – Type one dendritic cells	OS – Overall survival
DNA – Deoxyribonucleic acid	OS – Oxidative stress
ECM – Extracellular matrix	PBM – Photobiomodulation
EGCG – Epigallocatechin gallate	PD-1 – Programmed death-1
EGFR – Epithelial growth factor receptor	PD-L1 – Programmed death ligand-1
EOC – Epithelial ovarian, primary peritoneal or fallopian tube	PEA – Palmitoylethanolamide
cancers	PFS – Progression-free survival
FCR – Fear of cancer recurrence	PG – Prostaglandin
FMD – Fasting mimicking diet	QOL – Quality of life
G-CSF – Granulocyte colony-stimulating factor	ROS – Reactive oxygen species
GI – Gastrointestinal	RNA – Ribonucleic acid
H2O2 – Hydrogen peroxide	RSV – Rous sarcoma virus
HBO – Hyperbaric oxygen	SBP – Systolic blood pressure
HER2 – Human epidermal growth factor receptor 2	SNS – Sympathetic nervous system
HIF – Hypoxia inducible factor	SOSI – Symptoms of stress inventory
HPV – Human papilloma virus	SPMs – Specialised pro-resolving mediators
HR – Heart rate	STF – Short-term fasting
HRV – Heart rate variability	SVCT1– Sodium-dependant vitamin C transporter-1

ABBREVIATIONS

TAMs – Tumour associated macrophages

TCA – Tricarboxylic acid

TCR – T cell receptor

 $\mathsf{TGF}\text{-}\beta-\mathsf{Transforming}$ growth factor- β

Th1 – T helper 1

- Th2 T helper 2
- TLR Toll-like receptor

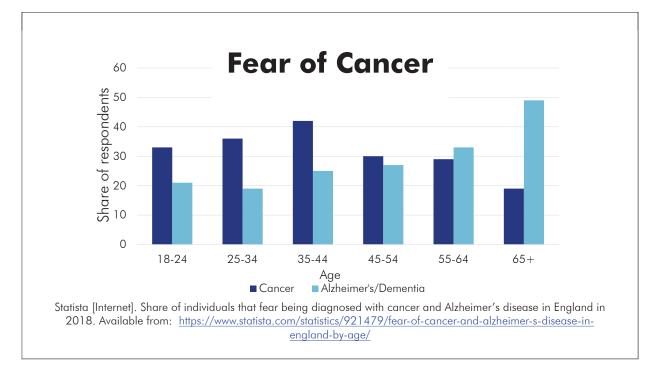
TME – Tumour microenvironment

TNBC – Triple-negative breast cancer

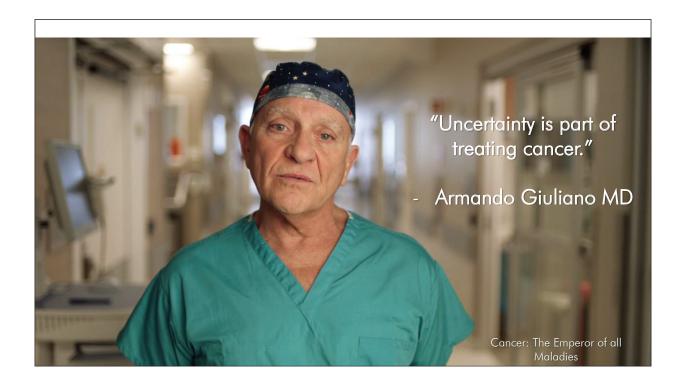
TNF-α – Tumour necrosis factor-α

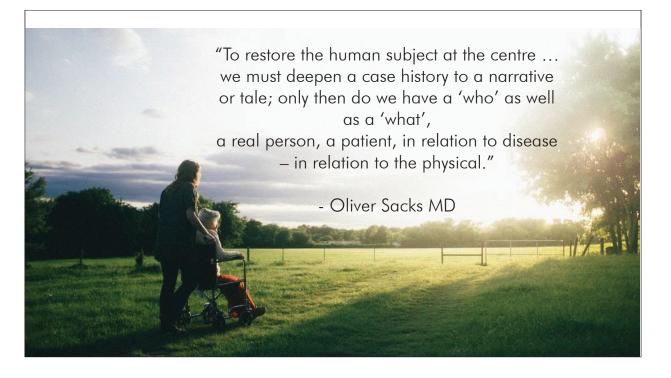
TRAIL-R2 – TNF-related apoptosis-inducing ligand-receptor 2

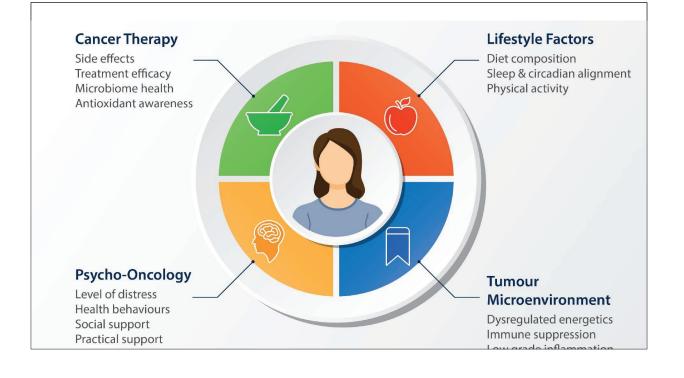
VEGF – Vascular endothelial growth factor


WBC – White blood cell

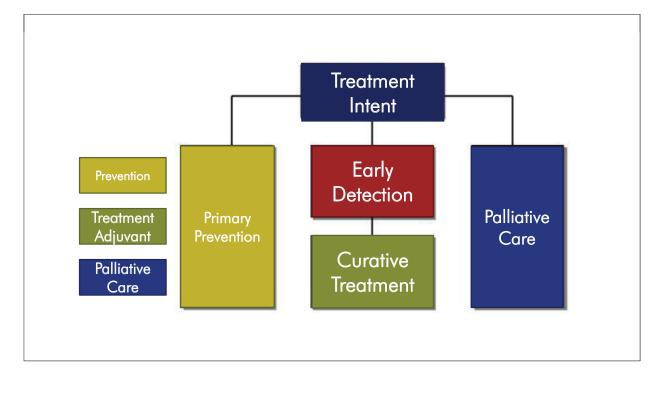
Decemption of the preservice of the pre

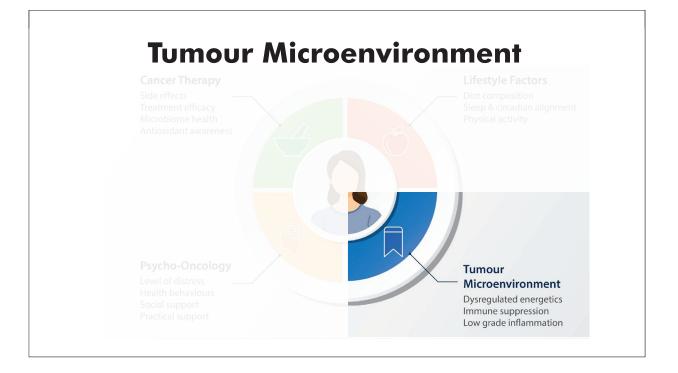


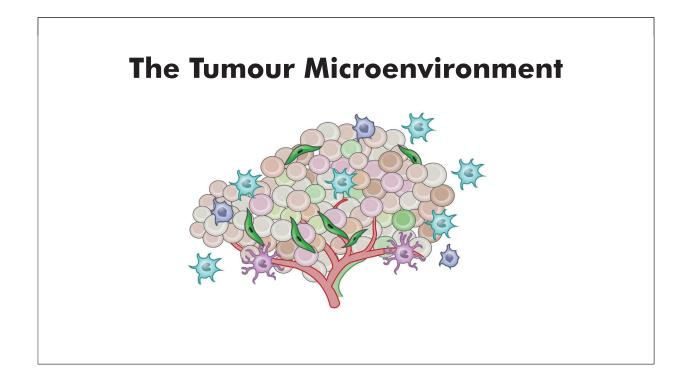


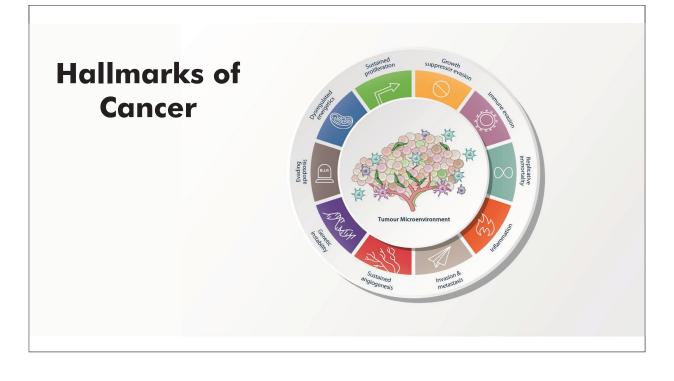


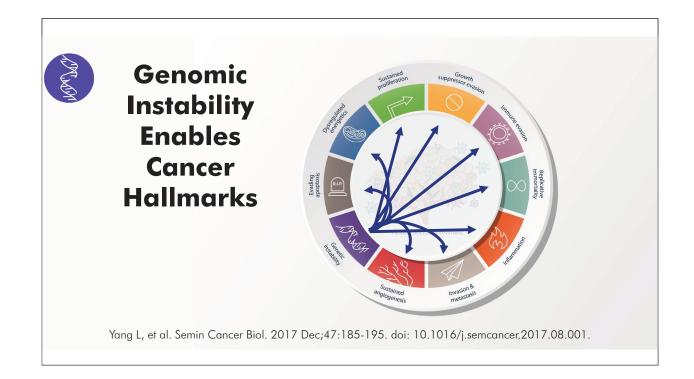
Adapted from Renz M, et al. J Clin Oncol. 2009 Jan 1;27(1):146-9. doi: 10.1200/JCO.2008.19.220 3; Kubler-Ross E. New York, NY, Simon & Schuster, 1969.

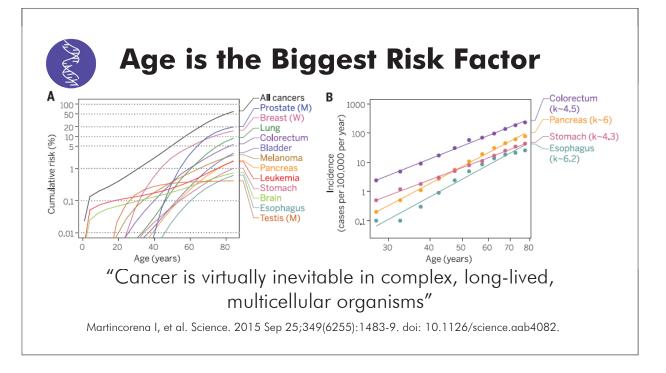


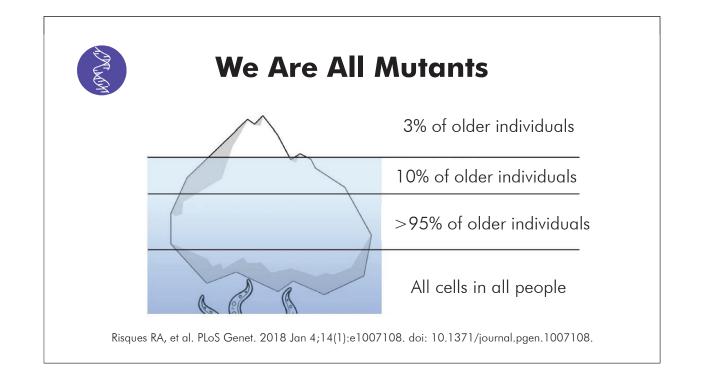


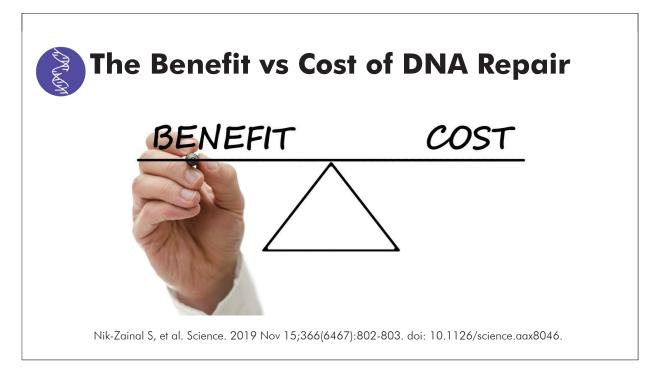


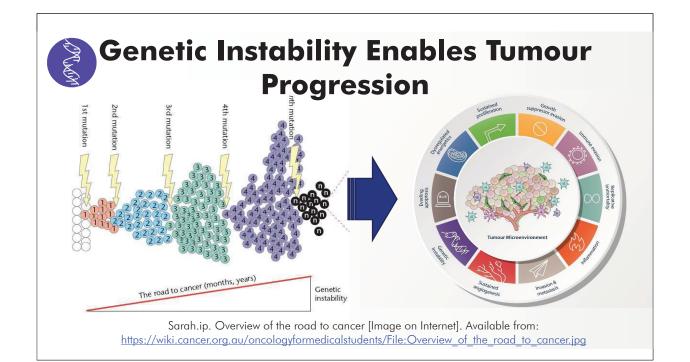


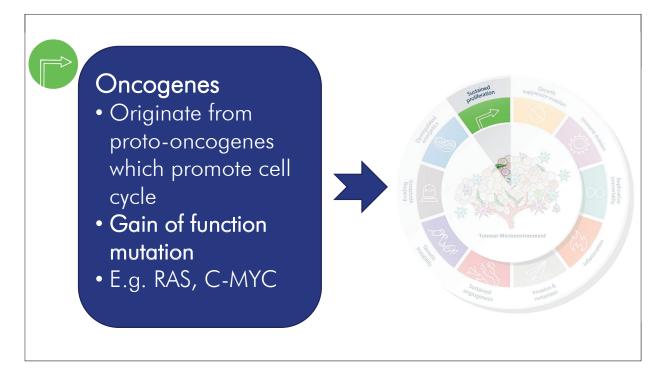

re

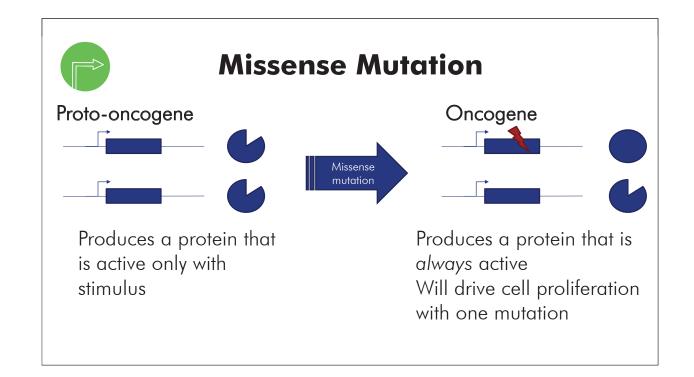


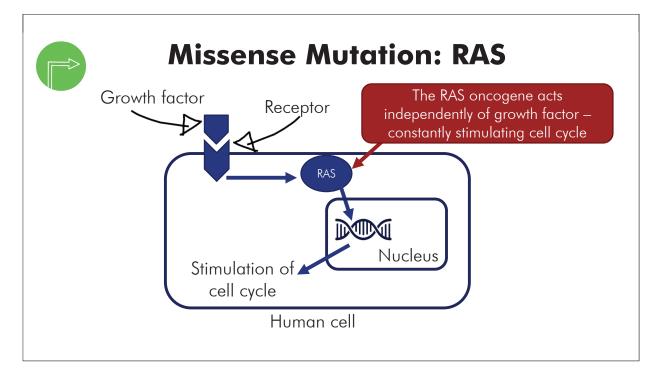


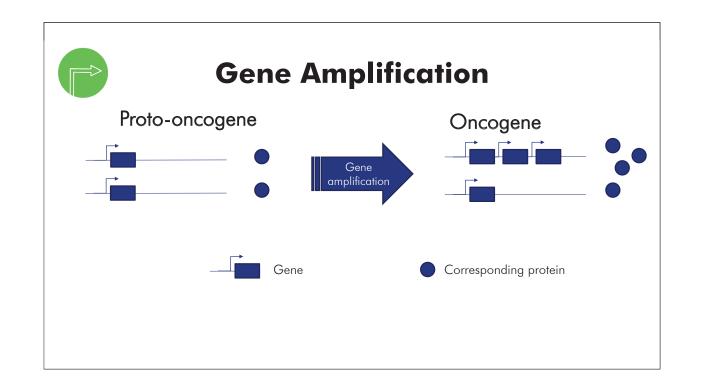


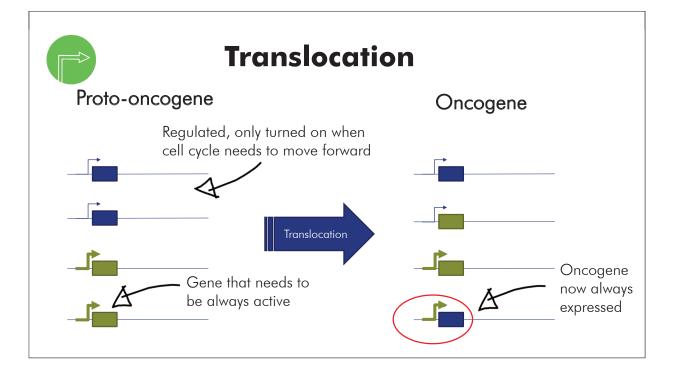


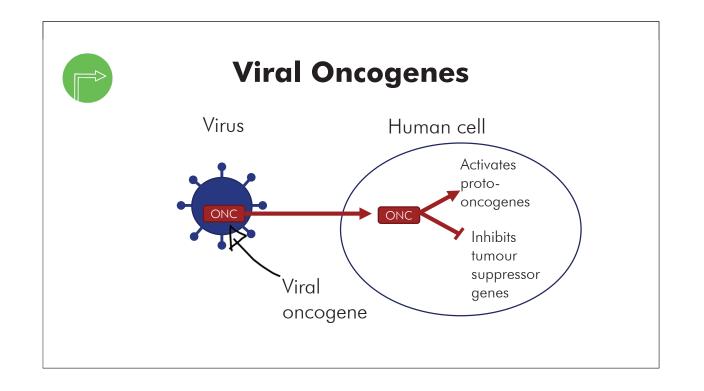


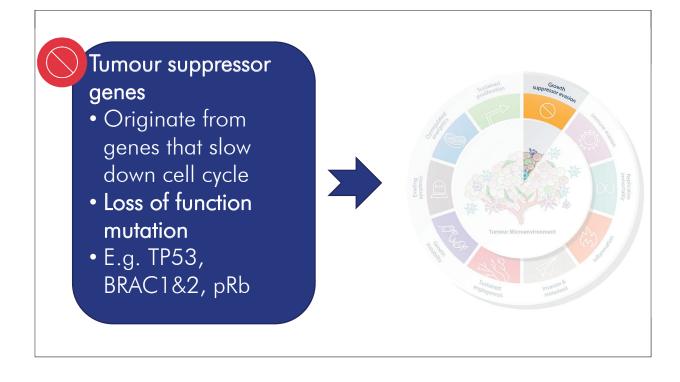


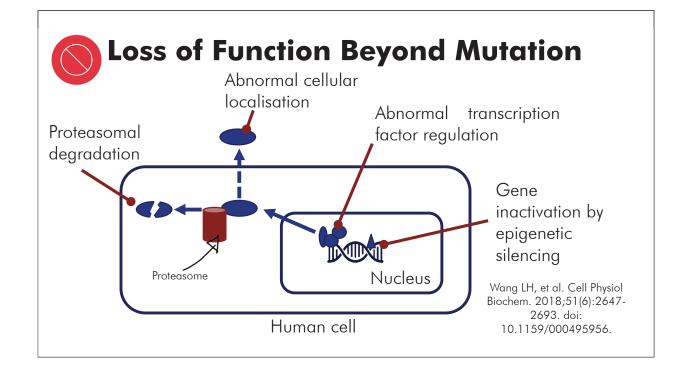

ONCOGENES

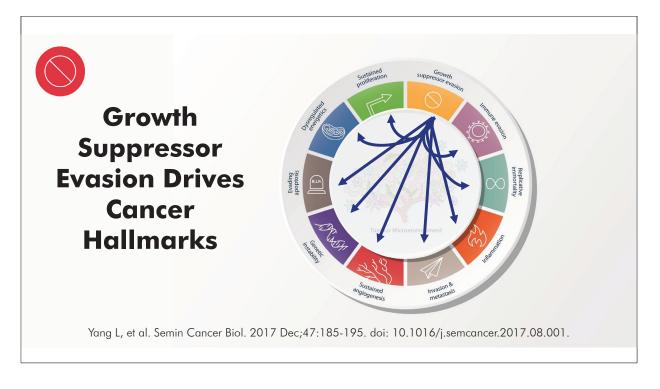


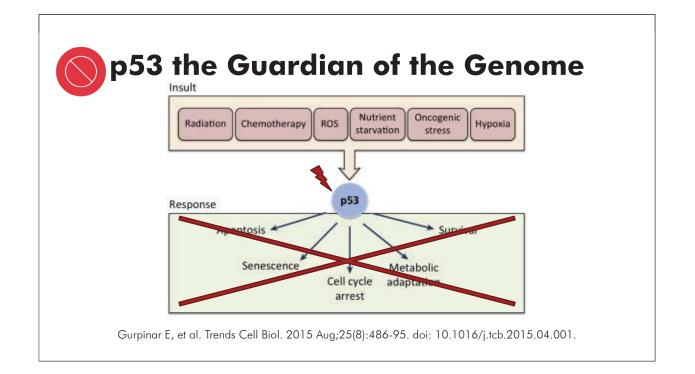

ONCOGENES

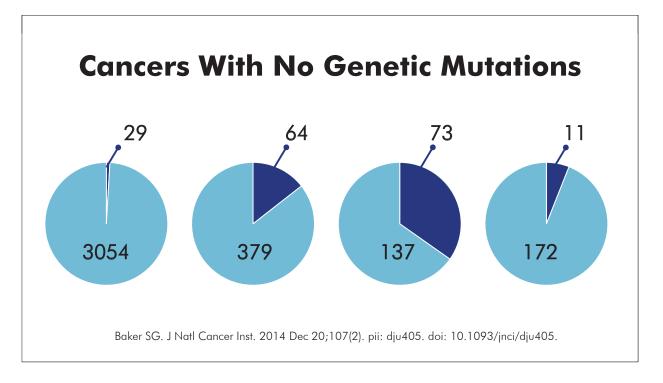



ONCOGENES

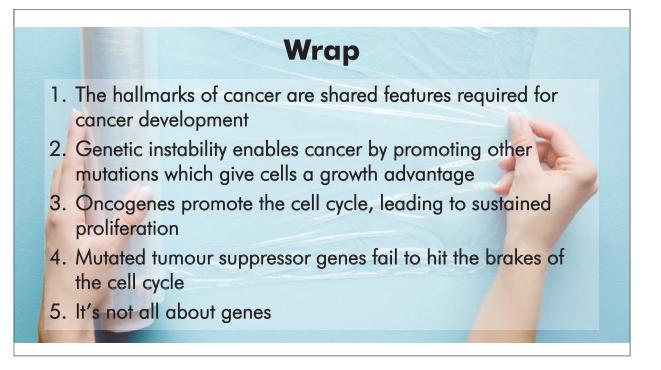



TUMOUR SUPPRESSOR GENES



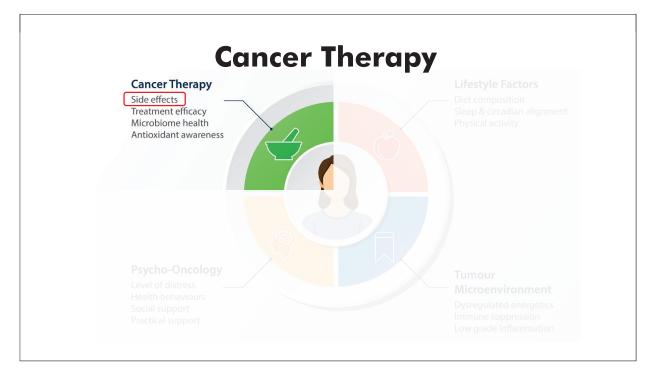

TUMOUR SUPPRESSOR GENES

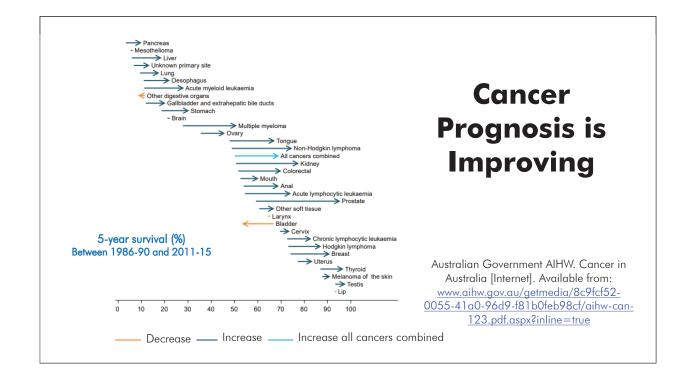
TUMOUR SUPPRESSOR GENES

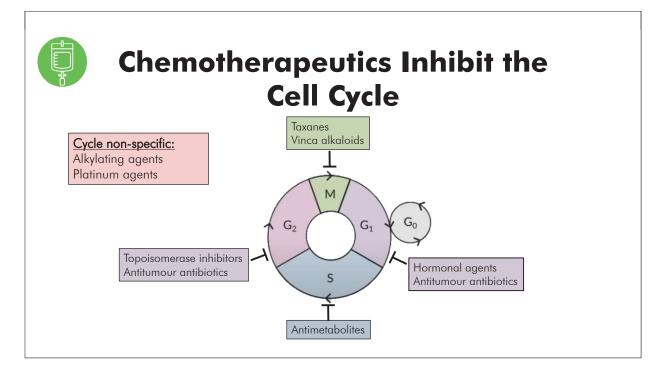


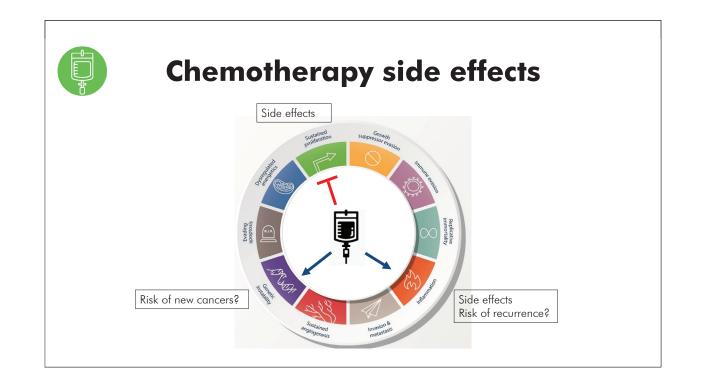
Maybe it's Not in Your Genes						
	Somatic mutation theory	Tissue organisation theory				
Summary	Genetic disease Focus on cancer cell	Development gone awry Focus on tissue interactions				
Mutations	Causative	Epiphenomenon				
Adjacent tissue	Supporting role	Key role				
Location relative to exposure	Cancer can only arise in tissue exposed to carcinogen	Cancer can arise in tissue not exposed to carcinogen				

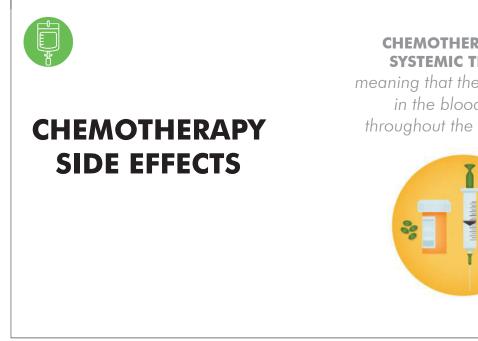
Baker SG. J Natl Cancer Inst. 2014 Dec 20;107(2). pii: dju405. doi: 10.1093/jnci/dju405.


'e

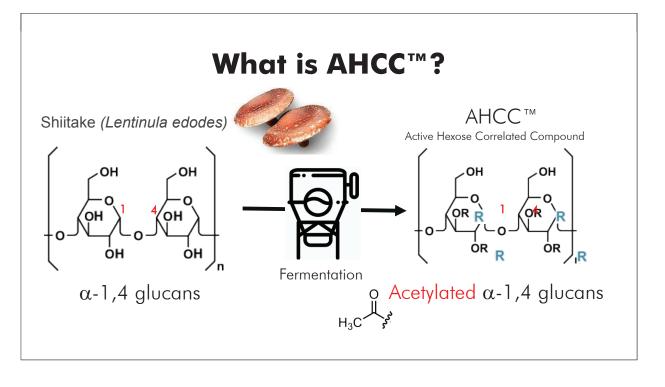

TUMOUR SUPPRESSOR GENES

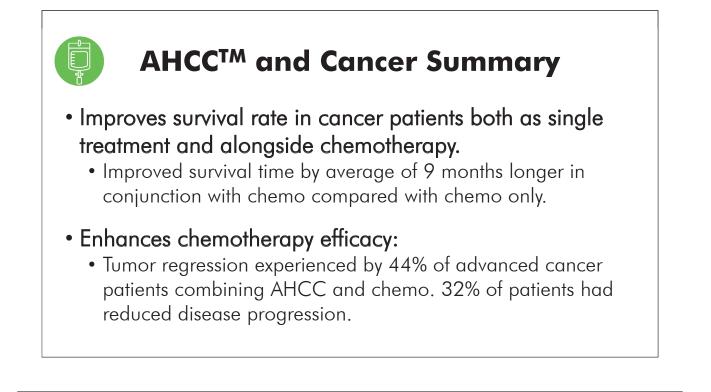

CANCER THERAPY MECHANISMS AND SIDE EFFECTS



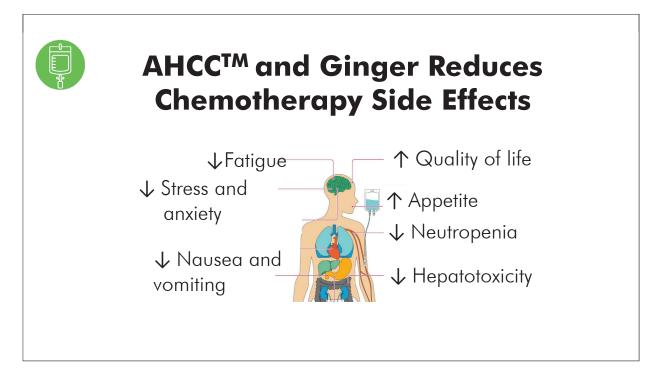

CANCER THERAPY MECHANISMS AND SIDE EFFECTS

CANCER THERAPY MECHANISMS AND SIDE EFFECTS

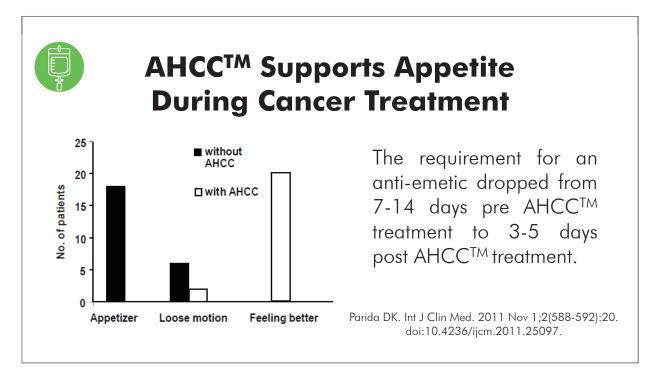


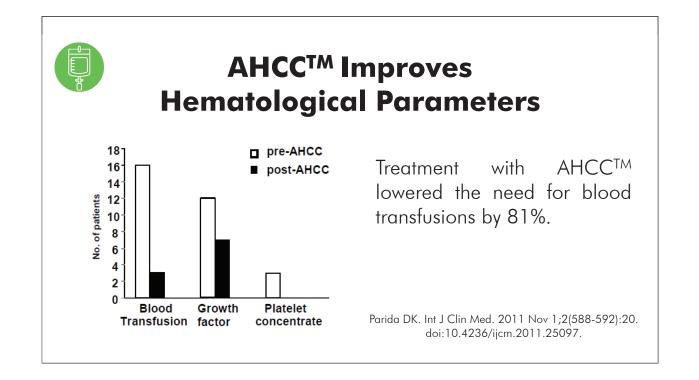

CHEMOTHERAPY IS A SYSTEMIC THERAPY

meaning that the drugs travel in the bloodstream throughout the entire body

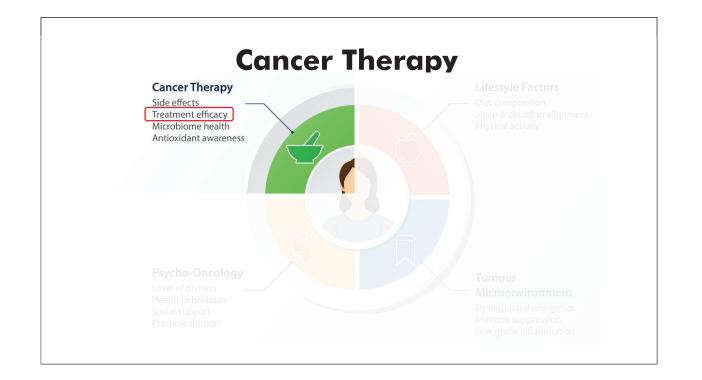


'e

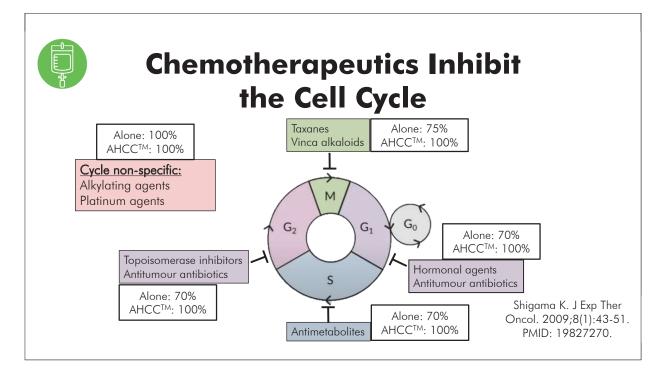


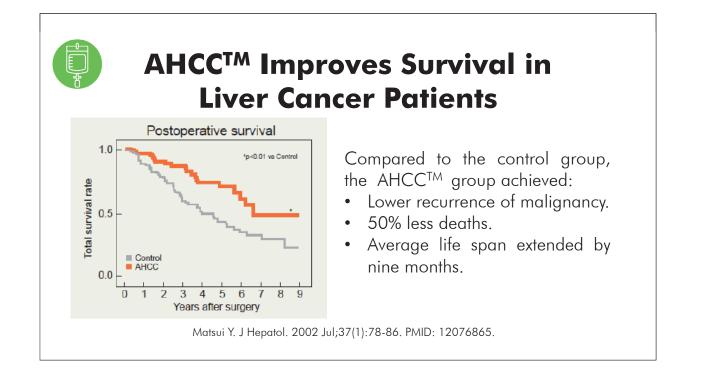


AHCC TM Improves QOL Post Cancer Treatment						
	Without AHCC	With AHCC				
Confinement to bed	14 - 16 hr/day	8 - 10 h/d				
Talking to people	not	yes				
Sleep pattern	irregular	regular				
Required antiemetic for						
Chemo related Nausea/vomiting	7 - 14 Days	3 - 5 Days				

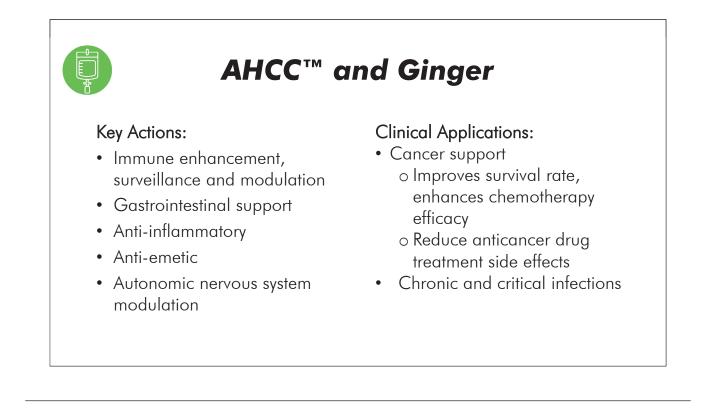


Ginger Helps Chemotherapy Nausea and Fatigue




Adjuvant ginger supplementation with 60 mg per day of gingerols is associated with better chemotherapy-induced nausearelated quality of life and less cancer-related fatigue.

Marx W. Nutrients. 2017 Aug;9(8). pii: E867. doi: 10.3390/nu9080867.



AHCC[™] Improves Survival in GI Cancer Patients

		Survival % for Gastric Cancer		Survival % for Colon Cancer		
AHCC Study	Japanese Gastric Cancer Association	Other Japanese Institutions		AHCC Study	Other Japanese Institutions	
100 %	93.4 %	91.5 – 93.4 %	Stage 0	100 %	100 %	
100 %	87.0 %	85.5 – 88. 7 %	Stage I	100 %	93 – 100 %	
92.3 %	68.3 %	74.9 – 75.9 %	Stage II	100 %	81 – 88 %	
82.8 %	50.1 %	53.6 - 61.7 %	Stage IIIA	95.2 %	73 – 76 %	
35.7 %	30.8 %	40.4 – 42.4 %	Stage IIIB	73.3 %	63 – 78 %	
14.3 %	16.6 %	Stage IVA: 14.3 – 19.7 % Stage IVB: 4 %	Stage IV	7.1 %	0 – 17 %	
	100 % 100 % 92.3 % 82.8 % 35.7 %	Cancer Association 100 % 93.4 % 100 % 87.0 % 92.3 % 68.3 % 82.8 % 50.1 % 35.7 % 30.8 %	Cancer Association Institutions 100 % 93.4 % 91.5 – 93.4 % 100 % 87.0 % 85.5 – 88.7 % 92.3 % 68.3 % 74.9 – 75.9 % 82.8 % 50.1 % 53.6 – 61.7 % 35.7 % 30.8 % 40.4 – 42.4 % 14.3 % 16.6 % Stage IVA: 14.3 – 19.7 %	APLCC Study Cancer Association Institutions 100 % 93.4 % 91.5 – 93.4 % Stage 0 100 % 87.0 % 85.5 – 88.7 % Stage I 92.3 % 68.3 % 74.9 – 75.9 % Stage III 82.8 % 50.1 % 53.6 – 61.7 % Stage IIIB 35.7 % 30.8 % 40.4 – 42.4 % Stage IV 14.3 % 16.6 % Stage IVA: 14.3 – 19.7 % Stage IV	AHCC Study Cancer Association Institutions AHCC Study 100 % 93.4 % 91.5 – 93.4 % Stage 0 100 % 100 % 87.0 % 85.5 – 88.7 % Stage I 100 % 92.3 % 68.3 % 74.9 – 75.9 % Stage III 100 % 82.8 % 50.1 % 53.6 – 61.7 % Stage IIIIA 95.2 % 35.7 % 30.8 % 40.4 – 42.4 % Stage IIIB 73.3 % 14.3 % 16.6 % Stage IVA: 14.3 – 19.7 % Stage IV 7.1 %	

Kawaguchi Y. Improved survival of patients with gastric cancer or colon cancer when treated with active hexose correlated compound (AHCC): effect of AHCC on digestive system cancer. Nat Med J. 2009;1(1):1-6.

CASE STUDY: LOBULAR BREAST CANCER

Case Study: GC – Stage IV Lobular Breast Cancer

- 61 year old female with stage IV (metastatic) lobular breast cancer.
- Inoperable metastasis affecting bowel; has had surgery (stent) to prevent obstruction.
- Referred from naturopath for intravenous (IV) nutritional support.

Symptoms

- Underweight: 41.0 kg
- Nausea and poor appetite
- Lack of energy and fatigue

Case kindly provided by Dr Timothy Hall, Clinic: Professional Integrative Medicine. Cumberland Park, SA

GC – Medications and Supplements

Medication

• Chemotherapy (Doxorubicin IV once per week)

Current supplements

- CoQ10 100 mg per day
- R-lipoic acid 200 mg per day
- Nutrient and herbal formulation to support phase II liver detox
- Calcium ascorbate (oral) 2-5 g per day
- Fish oil 1000 mg per day
- Vitamin D3/K2 spray once per day
- Vitamin D3 5000IU per day

CASE STUDY: LOBULAR BREAST CANCER

Case Study: GC – Screening and Initial Prescription

Screening

• Patient Reported Outcome Measurement Information System (PROMIS) Initial score: 25

Prescription (added to supplements)

- IV vitamin C 30 grams, once every two weeks
- AHCC[™] and Ginger 2 capsules twice daily

Case Study: GC - Results

Initial first week

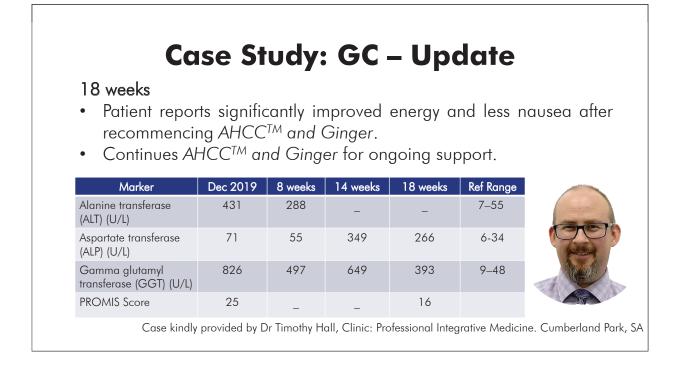
- Patient hospitalised with abdominal pain and bloating AHCCTM and Ginger discontinued.
- Investigations revealed abdominal pain was attributed to chemotherapy and intestinal stent.
- Patient recommenced AHCCTM and Ginger.

8 weeks

- Decreased Cancer antigen 15-3: Dec 2019 (873) to Jan 2020 (655)
 12 weeks
- PROMIS questionnaire: reduced nausea and vomiting.

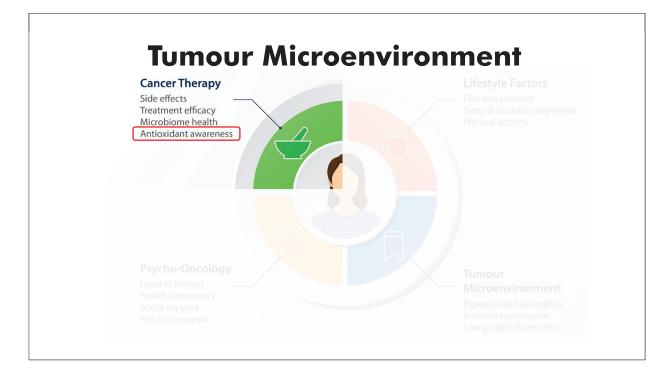
"The Metagenics supplement has stopped me from vomiting"

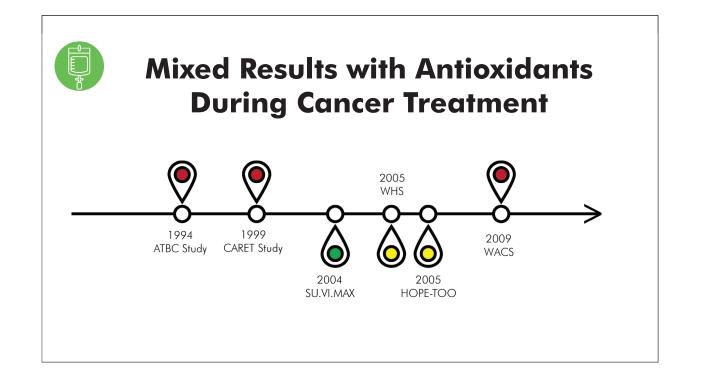
CASE STUDY: LOBULAR BREAST CANCER

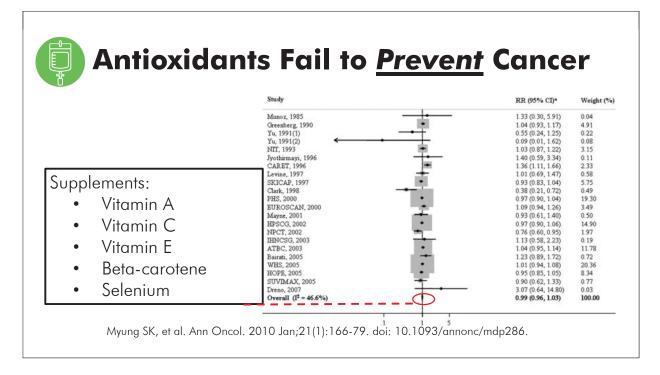

Case Study: GC – Results

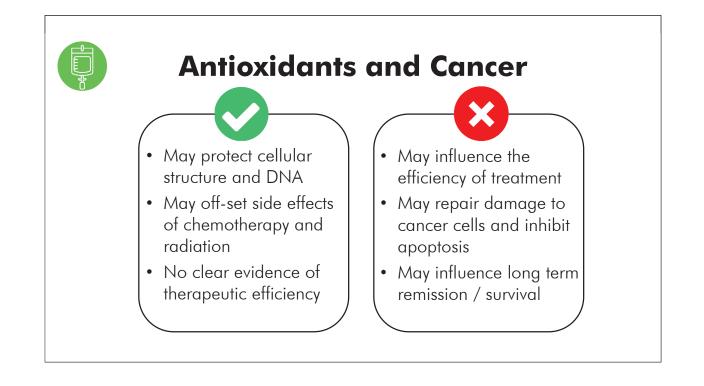
14 weeks:

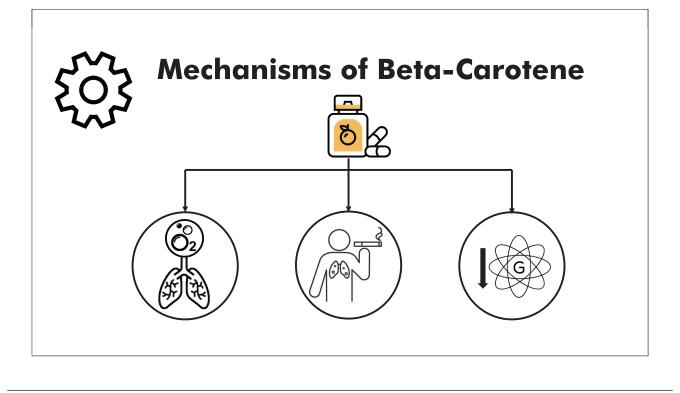
• Patient report after AHCCTM and Ginger trial:

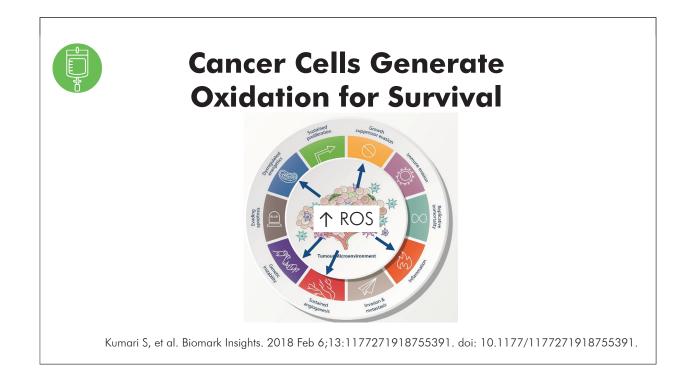

Trial finshed Zweeks ago. A week later I realised I did nothave the same level of energy occasionally felt a little n e=ie. wished the after eater

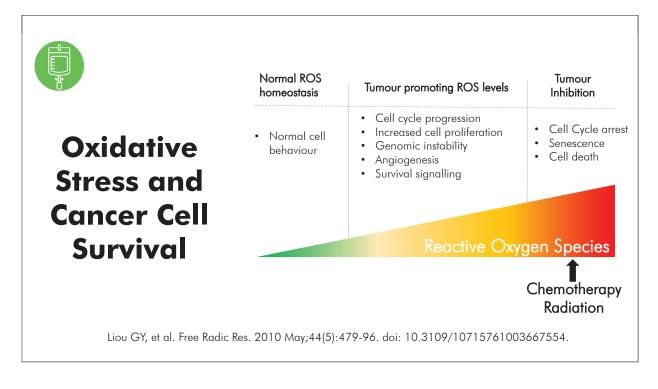

- Continues AHCCTM and Ginger for ongoing support.
- Elevated liver enzymes, cause not determined.

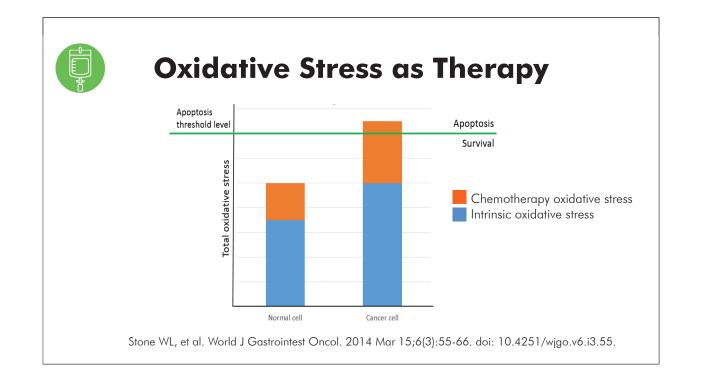

ANTIOXIDANT AWARENESS

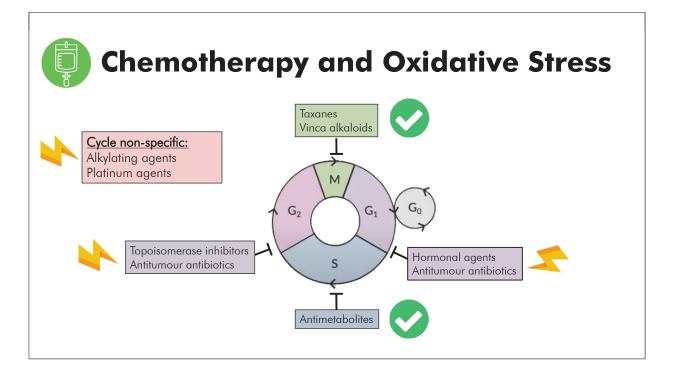


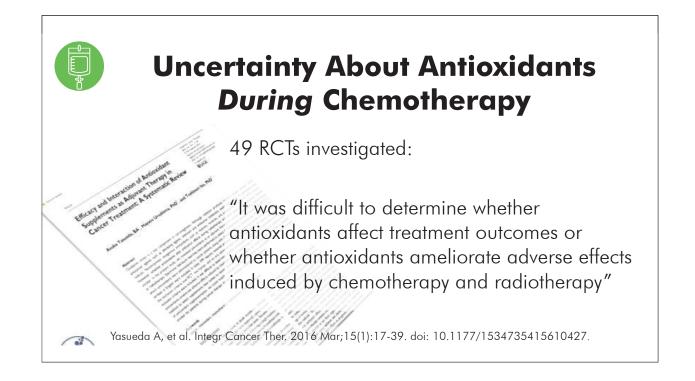

ANTIOXIDANT AWARENESS

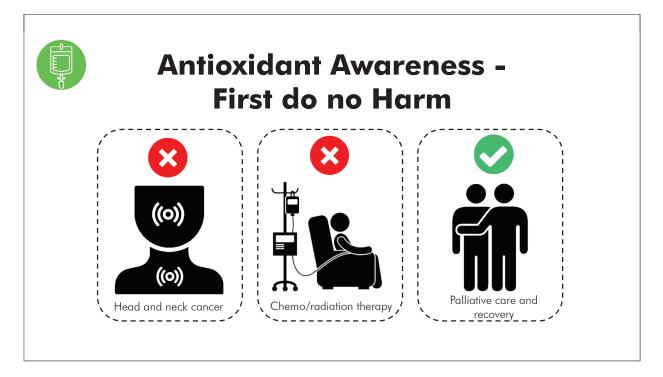


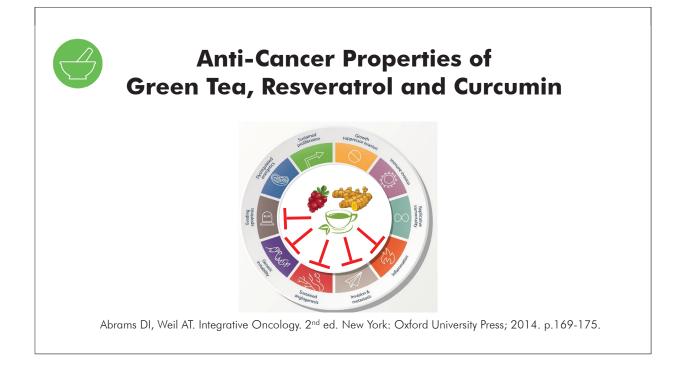


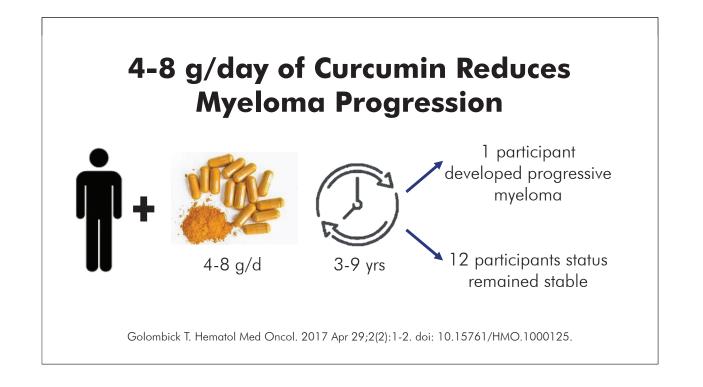

ANTIOXIDANT AWARENESS



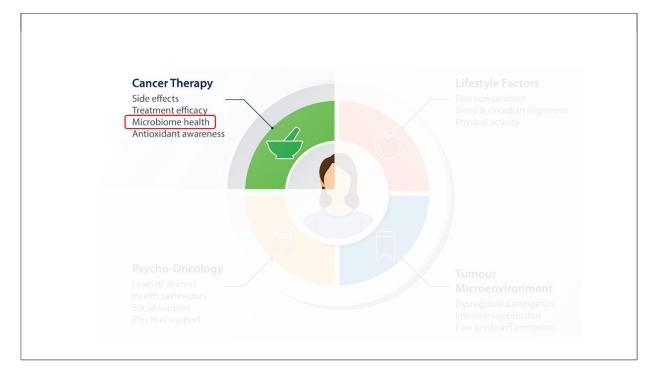


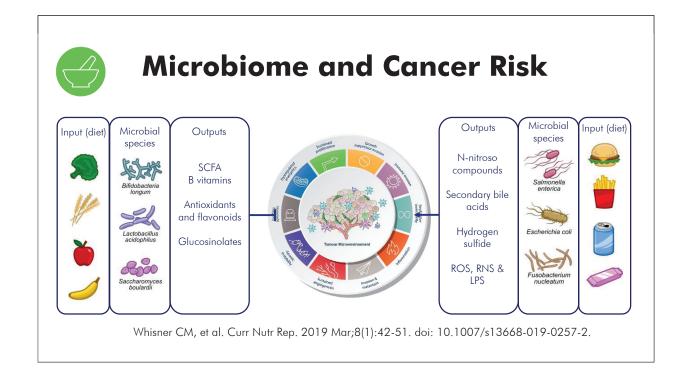



High Absorption Multi Mineral with Apple Cider Vinegar

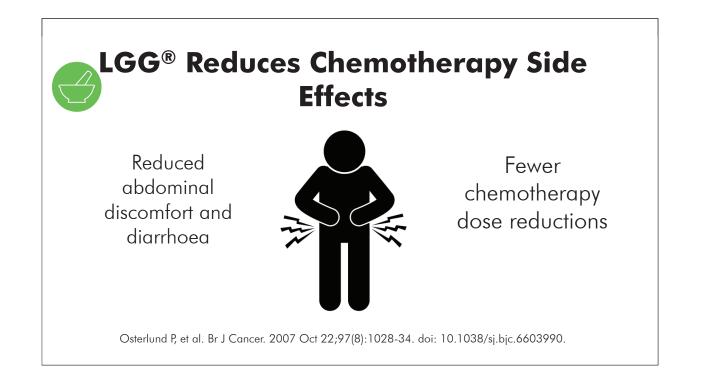

- Calcium phosphate dihydrate
- Potassium citrate
- Meta Mag[®] Magnesium bisglycinate
- Meta $\mathsf{Fe}^{\mathbb{R}}$ Iron bisglycinate
- Meta Zn[®] Zinc bisglycinate

- Manganese
- Boron
- lodine
- Molybdenum
- Selenium
- Chromium

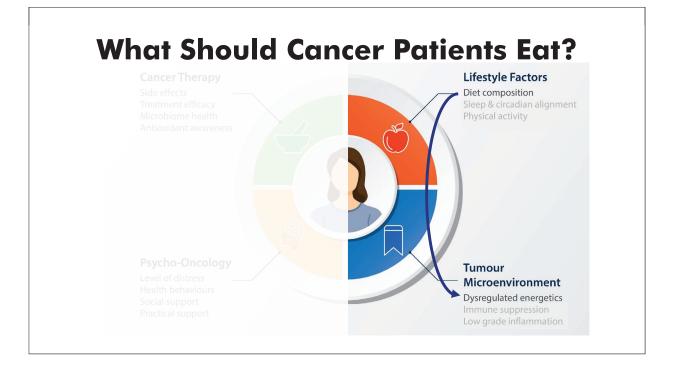


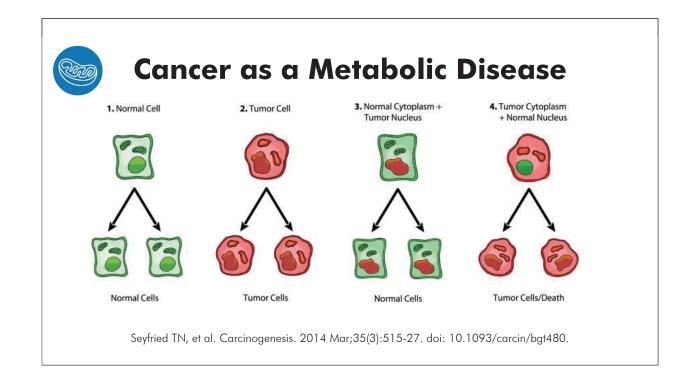


MICROBIOME HEALTH

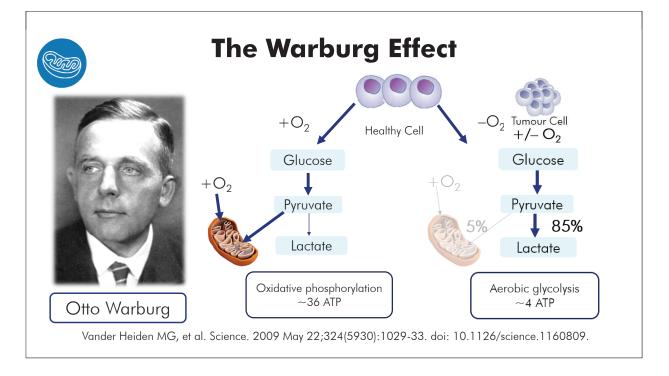


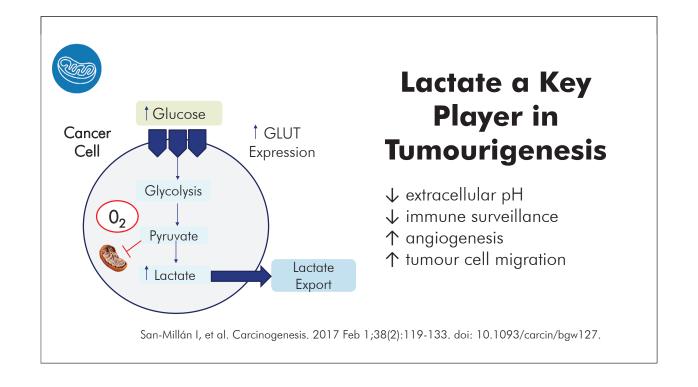
MICROBIOME HEALTH

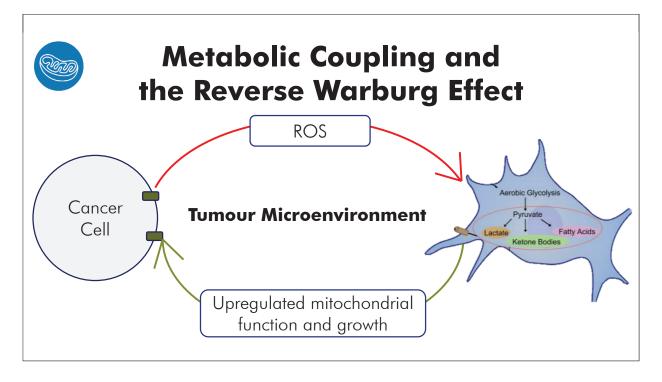


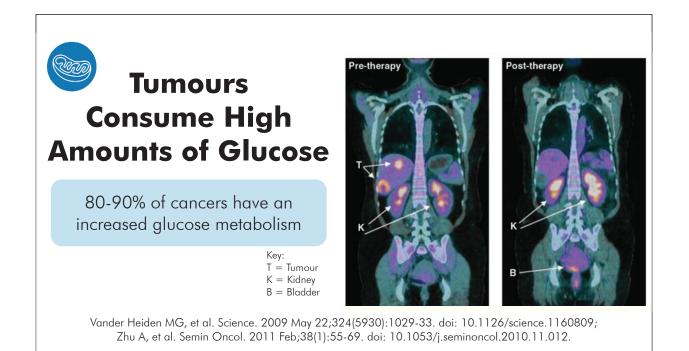


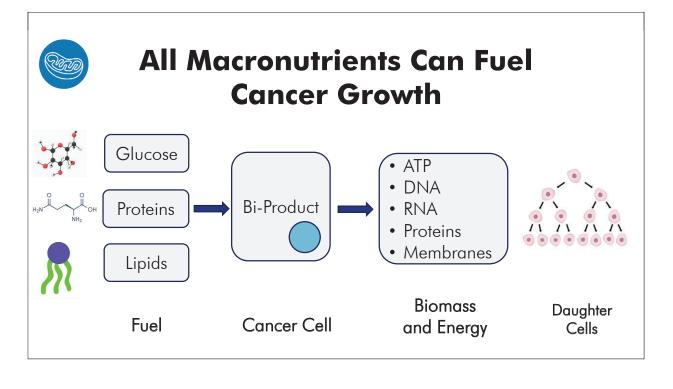
MICROBIOME HEALTH

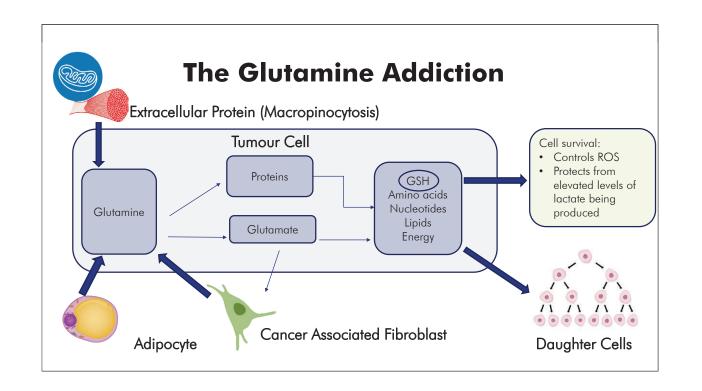

Neutrophil count	Probiotic safety considerations		
Normal neutrophil count 2,500 to 6,000	Strain specific, quality probiotics generally regarded as safe Consider Strain Specific Probiotics for Gut Microbiota Restoration and Support post cancer therapy to rebuild		
	Avoid probiotics if undergoing haematopoietic stem cell transplants		
Low neutrophil count 500 to 2,500	Consider strain specific, quality probiotics with considerable sa profile, such as Double Strength, Researched, Authentic LGG® Avoid use of S. boulardii		
	Avoid probiotics if undergoing haematopoietic stem cell transplants		
Neutropaenia <500	Avoid probiotic use until neutropaenia is resolved		

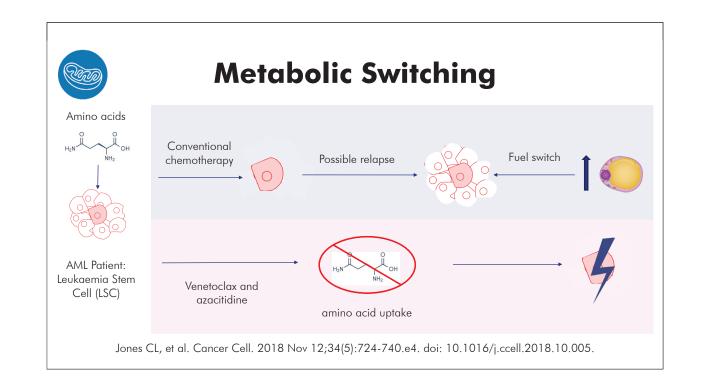

'e

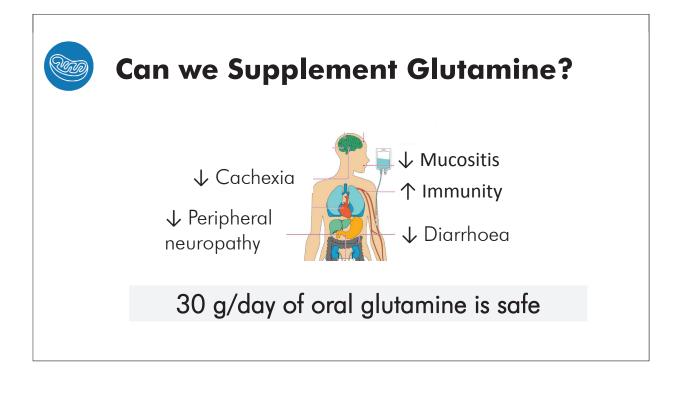






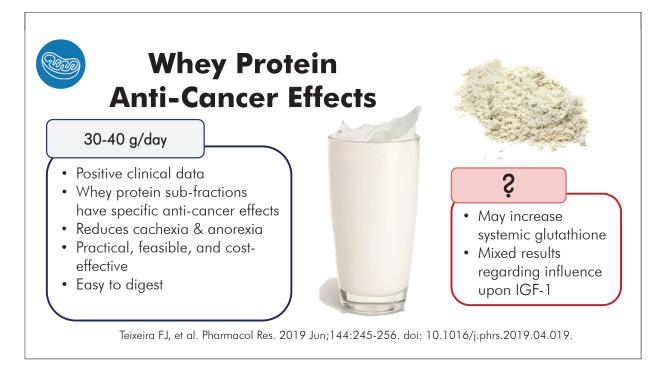






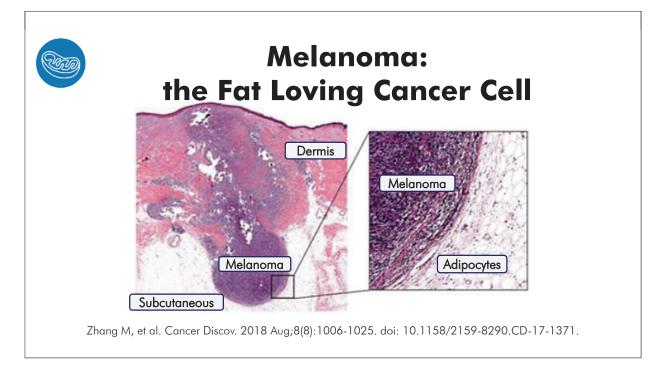
References: The Glutamine Addiction: Glutaminolysis

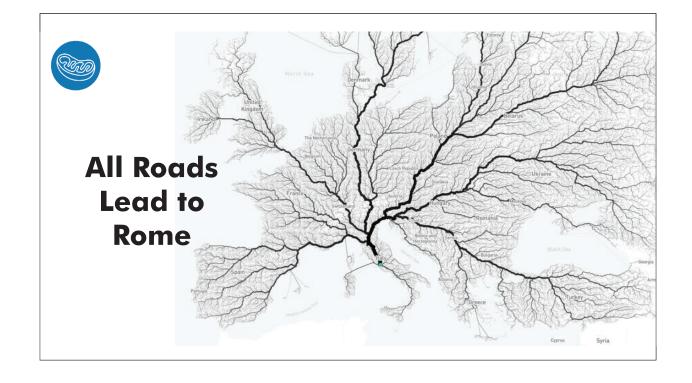
- Hoerner CR, Chen VJ, Fan AC. The 'Achilles Heel' of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. Kidney Cancer. 2019 Feb 5;3(1):15-29. doi: 10.3233/KCA-180043.
- Bott AJ, Maimouni S, Zong WX. The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers (Basel). 2019 Jun 4;11(6). pii: E770. doi: 10.3390/cancers11060770.



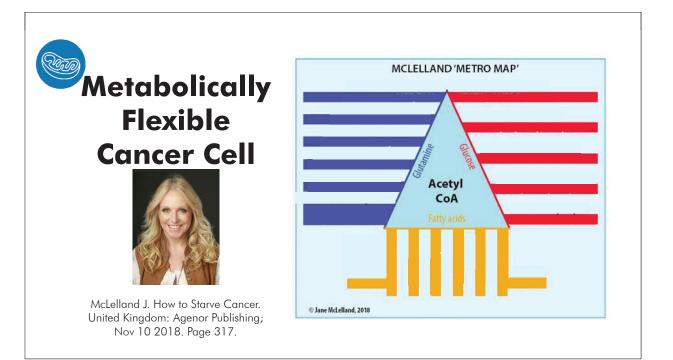
References: Can we Supplement with Glutamine?

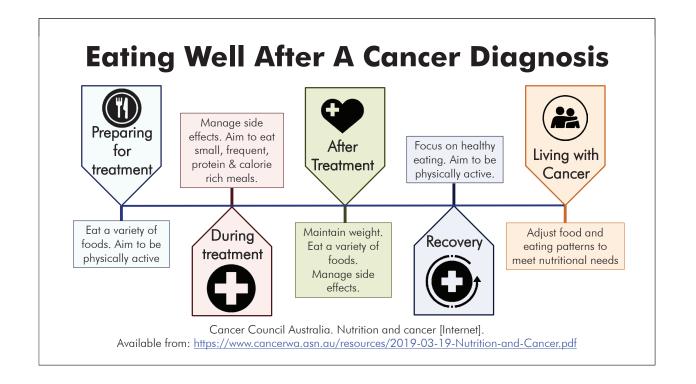
- Sayles C, Hickerson SC, Bhat RR, Hall J, Garey KW, Trivedi MV. Oral Glutamine in Preventing Treatment-Related Mucositis in Adult Patients With Cancer: A Systematic Review. Nutr Clin Pract. 2016 Apr;31(2):171-9. doi: 10.1177/0884533615611857.
- Amara S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann Pharmacother. 2008 Oct;42(10):1481-5. doi: 10.1345/aph.1L179.
- Jolfaie NR, Mirzaie S, Ghiasvand R, Askari G, Miraghajani M. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci. 2015 Sep;20(9):910-8. doi:10.4103/1735-1995.170634.

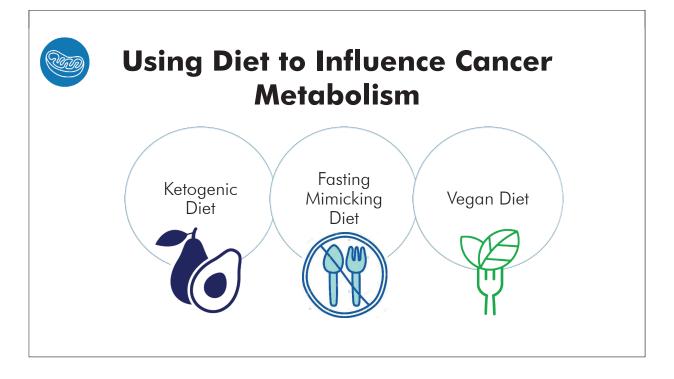


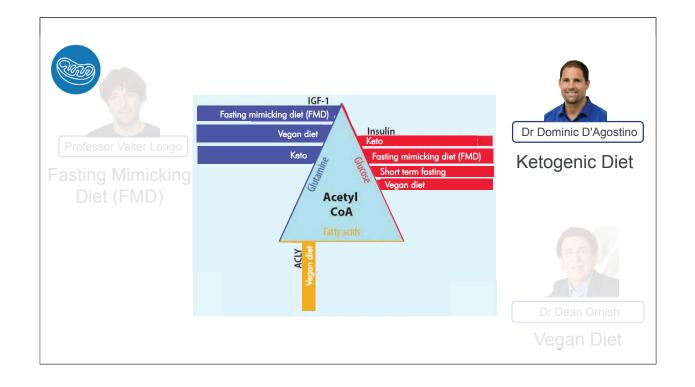

Positive Effects of Whey Protein in Cancer

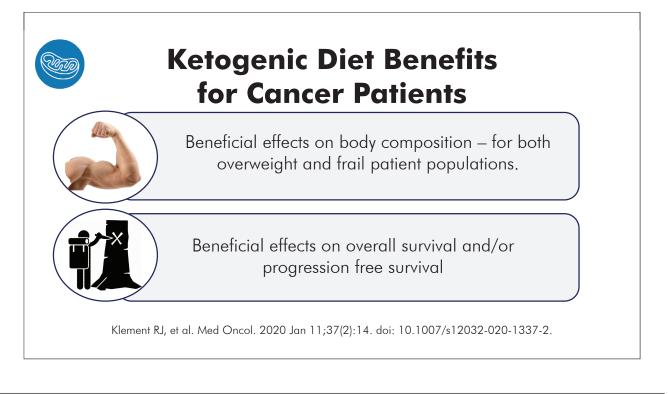
Study	Cancer Type	Whey Type administration	Effect
Kennedy et al. (1995)	Breast, pancreatic, liver	WPC, 30 g/day	Mixed
See et al. (2002)	Bladder, breast, prostate, neuroblastoma, lung, colon, ovarian, gastric, lymphoma, osteosarcoma	WPI, 40 g/day	Positive
Gillis et al. (2016)	Colon		Positive
Madzima et al. (2017)	Breast	Whey & casein 40 g/day	Positive
Bumrungpert et al. (2018)	Breast, colon, lung, rectum, stomach, cholangiocarcinoma, pancreatic	WPI 40 g/day	Positive

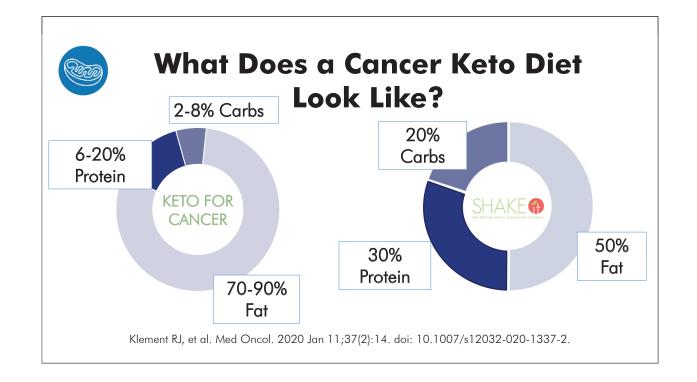

Teixeira FJ, et al. Pharmacol Res. 2019 Jun;144:245-256. doi: 10.1016/j.phrs.2019.04.019.

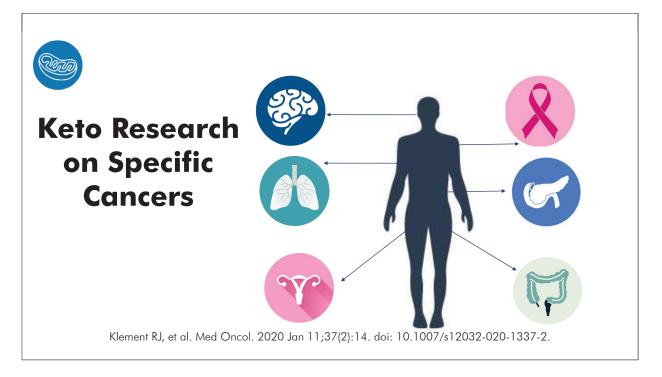




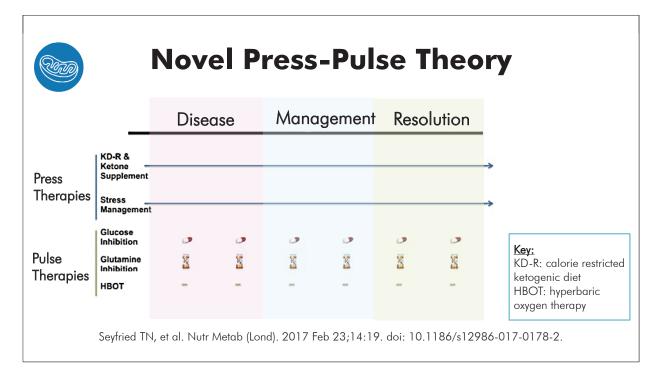


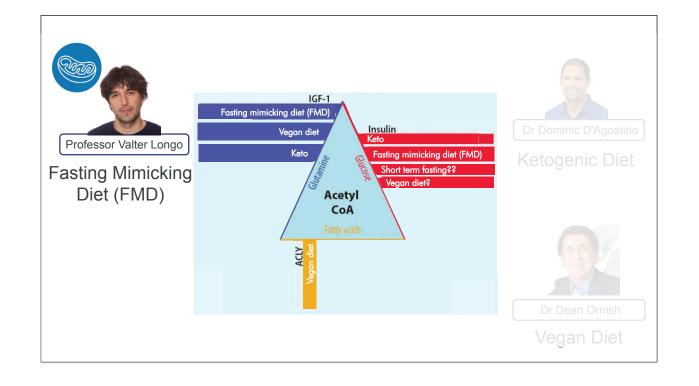




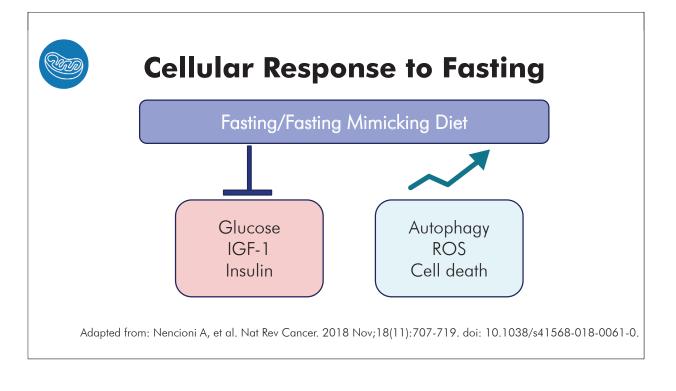


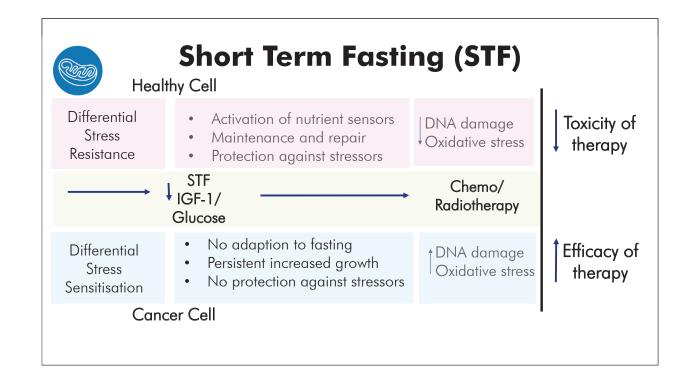
Review on Keto and Cancer						
Cancer	Controlled	Randomised	Keto	Duration	Outcome	Simultaneous Therapies
Glioma 2014	Yes	No	60 g carbs/day	12 weeks	Increased progression free survival	Targeted therapy and chemo – 3 patients
Glioma 2018	No	No	70% fat, 20g carbs/day	12 weeks	Improved body composition	Chemo and radiotherapy – 3 patients
Glioma 2019	No	No	84.4-88.8% fat	14 weeks	Increased overall survival	Chemo and radiotherapy
Glioma 2019	No	No	Modified Atkins	6 weeks	Increased overall survival, progression free survival	Chemo and radiotherapy
Pancreas 2018	Yes	No	70-80% fat	NA	Improved body composition	NA
Pancreas 2019	No	No	Low carb high fat	NA	Increased overall survival, progression free survival	Chemo
Pancreas and lung 2017	No	No	4:1 ratio - 90% fat	5 and 6 weeks	Increased overall survival, progression free survival	Chemo and radiotherapy
Lung 2019	No	No	Low carb high fat	NA	Increased overall survival, progression free survival	Chemo and hyperbaric oxygen
Breast 2019	Yes	Yes	55% fat, 20% MCT	3 months	Increased overall survival, improved body composition	Chemo
Breast, HNSCC, Rectal 2019	Yes	No	75-80% fat	4-6 weeks	Improved body composition	Radiotherapy
Rectal 2018	Yes	No	1.4:1 ratio	l year	Increased progression free survival	Chemo
Ovarian/Endomentrial 2018	Yes	Yes	70% fat	12 weeks	Improved body composition	Chemo

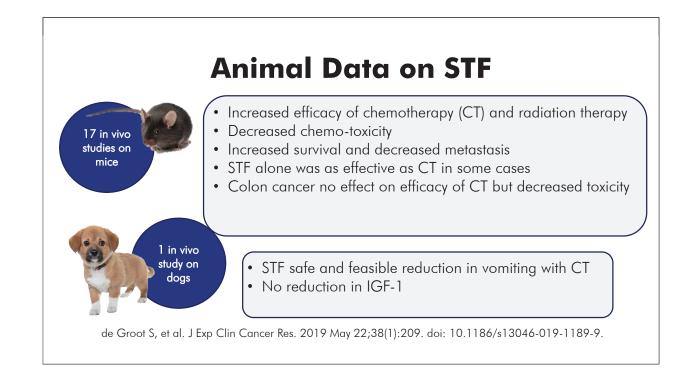

Additional References: Ketogenic Diet and Cancer

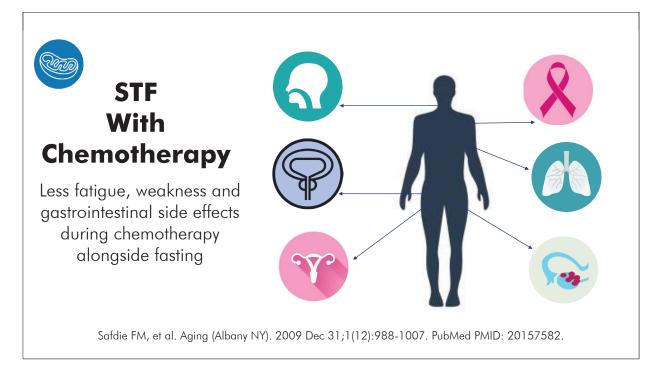

- Kang CM, Yun B, Kim M, Song M, Kim YH, Lee SH, et al. Postoperative serum metabolites of patients on a low carbohydrate ketogenic diet after pancreatectomy for pancreatobiliary cancer: a nontargeted metabolomics pilot study. Sci Rep. 2019 Nov 14;9(1):16820. doi: 10.1038/s41598-019-53287-y.
- Branca JJ, Pacini S, Ruggiero M. Effects of Pre-surgical Vitamin D Supplementation and Ketogenic Diet in a Patient with Recurrent Breast Cancer. Anticancer Res. 2015 Oct;35(10):5525-32. PubMed PMID: 26408720.
- İyikesici MS, Slocum AK, Slocum A, Berkarda FB, Kalamian M, Seyfried TN. Efficacy of Metabolically Supported Chemotherapy Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy for Stage IV Triple-Negative Breast Cancer. Cureus. 2017 Jul 7;9(7):e1445. doi: 10.7759/cureus.1445.
- Cohen CW, Fontaine KR, Arend RC, Soleymani T, Gower BA. Favorable Effects of a Ketogenic Diet on Physical Function, Perceived Energy, and Food Cravings in Women with Ovarian or Endometrial Cancer: A Randomized, Controlled Trial. Nutrients. 2018 Aug 30;10(9). pii: E1187. doi: 10.3390/nu10091187.
- Cohen CW, Fontaine KR, Arend RC, Alvarez RD, Leath CA III, Huh WK, et al. A Ketogenic Diet Reduces Central Obesity and Serum Insulin in Women with Ovarian or Endometrial Cancer. J Nutr. 2018 Aug 1;148(8):1253-1260. doi: 10.1093/jn/nxy119.

Additional References: Ketogenic Diet and Cancer


- Martin-McGill KJ, Srikandarajah N, Marson AG, Tudur Smith C, Jenkinson MD. The role of ketogenic diets in the therapeutic management of adult and paediatric gliomas: a systematic review. CNS Oncol. 2018 Apr;7(2):CNS17. doi: 10.2217/cns-2017-0030.
- Mukherjee P, Augur ZM, Li M, Hill C, Greenwood B, Domin MA, et al. Therapeutic benefit of combining calorierestricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun Biol. 2019 May 29;2:200. doi: 10.1038/s42003-019-0455-x.
- Winter SF, Loebel F, Dietrich J. Role of ketogenic metabolic therapy in malignant glioma: A systematic review. Crit Rev Oncol Hematol. 2017 Apr;112:41-58. doi: 10.1016/j.critrevonc.2017.02.016.
- Artzi M, Liberman G, Vaisman N, Bokstein F, Vitinshtein F, Aizenstein O, et al. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: (1)H-MRS study. J Neurooncol. 2017 Apr;132(2):267-275. doi: 10.1007/s11060-016-2364-x.
- Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, et al. A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Cancer Res. 2016 May 15;22(10):2482-95. doi: 10.1158/1078-0432.CCR-15-0916.







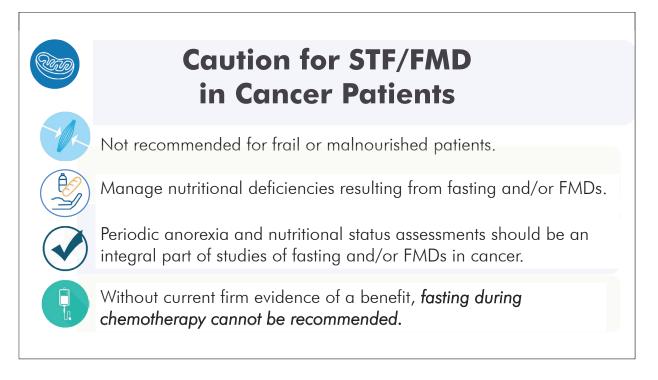
Adapted: de Groot S, et al. J Exp Clin Cancer Res. 2019 May 22;38(1):209. doi: 10.1186/s13046-019-1189-9.

	Open Access
	ting on quality
RESEARCH ANTICLE The effects of short-term far of life and tolerance to ch patients with breast and patients with breast	emotherapy in a emotherapy in a ovarian cancer: a ovarian udv
The effects tolerance and of life and and	illot study illot study and the second of th
randomized S. Kessler 12, Main randomized , Christian S. Kessler 12, Main Barbara Brückner ⁴ , Ja	nulty of the IOOL and well-being
Stephan P. Bauerdeid (Minoz) Barbara Minoz Bainer Sangel ² , Barbara Kunz, Barbara Minoz Background: This pilot rail arms to study the fit Background: This pilot rail arms to study the fit and the study of the study resonance of the arms of the study of the study of the study Methodoward Yong were in composited.	And defined and Andrease and An
Methownerapy Cyfollowed anded 24	OL Was less mean dient 141 ± 500
chemol 36 h bernet system started 36 h bernet sy	and the decision of the second
chemistri 56 h televiti no passini vedi meso territo 15 h televiti no passini vedi meso RCT reconstructive dell'encontrative RCD for con- netti 57 h televiti no passi encontrati 100 for con- resti 57 h televiti no passi encontrati 100 for con- resti 64 se in passi encontrati 100 for con- resti 64 se in passi encontrati 100 for con- ference 100 for contrative resti 100 for Conductione 57 h during demonstrative Lange secondare that se are regardle tratil regardlere that se are regardlered.	Short term tasting during chemotherapy is well tolerated and appears to improve QOL and fatigue
Trial registration: I'm General Concer, Chemoure Keywords: Breast Concer, Chemoure	
	3MC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2.

Fasting Mimicking Diet (FMD)

		Day 1 4600 kJ	Days 2–5 3000 kJ/day
	Protein	11%	9%
er Longo	Fat	46%	44%
Longo	CHO	43%	47%

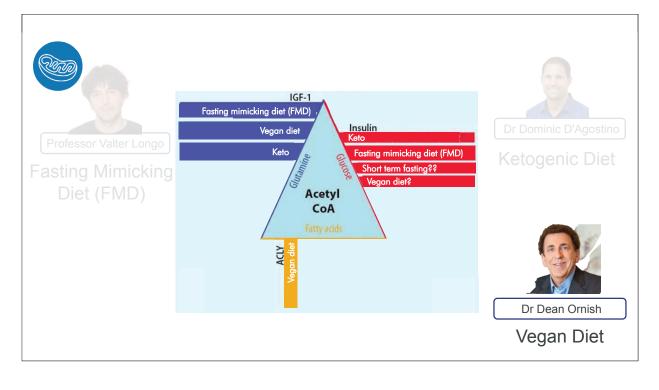
• Targets IGF-1 and glucose

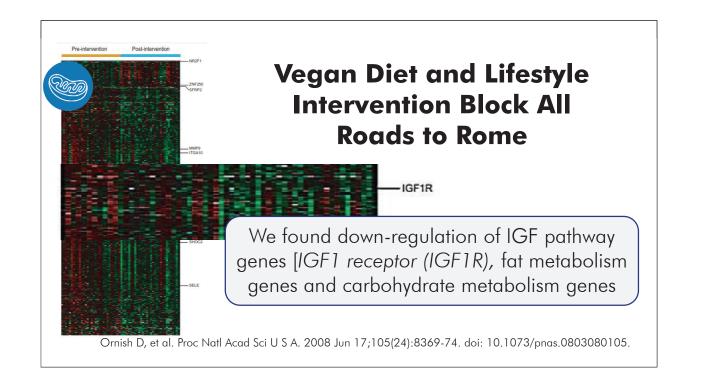

Professor Valter

- Several ongoing clinical trials for FMD and cancer
- FMD: 3 days before and continues for 1 day after chemotherapy

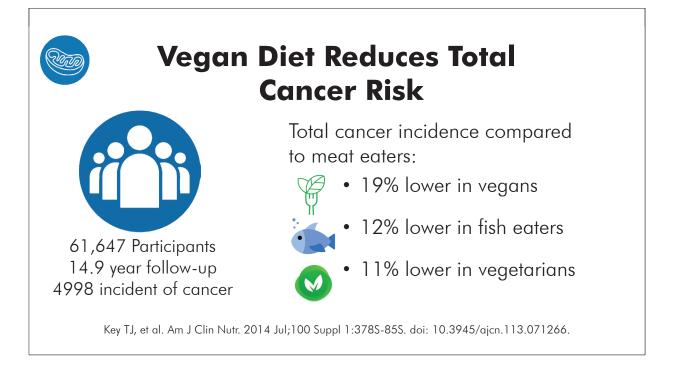
Buono R, et al. Trends Endocrinol Metab. 2018 Apr;29(4):271-280. doi: 10.1016/j.tem.2018.01.008.

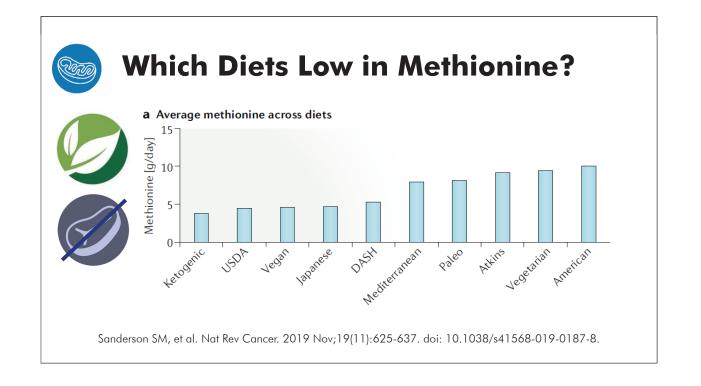
Study Title	Study Status	Conditions	Interventions
Safety, feasibility and metabolic effects of the fasting mimicking diet (FMD) in cancer patients	Recruiting	Malignant neoplasmCancer	• FMD
Fasting mimicking diet with chemo-immunotherapy in non-small cell lung cancer (NSCLC)	Recruiting	NSCLC	FMDRegular diet
Fasting mimicking diet in patients undergoing active cancer treatment	Recruiting	CancerBeast cancerColorectal cancer	• Prolon
Fasting mimicking diet in prostate cancer and metabolic syndrome	Active	 Prostate cancer Metabolic syndrome Intermittent fasting 	• FMD
Calorie restriction with or without metformin in triple negative breast cancer	Not yet recruiting	Triple negative breast cancer	FMDMetforminPreoperative chemo
Dietary restriction as an adjunct to neoadjuvant chemotherapy for HER2 negative breast cancer	Completed	 Fasting mimicking diet Breast cancer Neoadjuvant chemotherapy Pathological complete response 	• FMD
Impact of dietary intervention on tumour immunity: the digesT trial	Recruiting	Breast cancerMelanoma, Malignant	• FMD
Fasting and nutritional therapy in patients with advanced metastatic prostate cancer	Recruiting	FastingProstatic neoplasms	FastingControl
Metformin plus/minus fasting mimicking diet To target the metabolic vulnerabilities of LKB1-inactive lung adenocarcinoma	Not yet recruiting	Advanced LKB1-inactive lung adenocarcinoma	 Metformin Hydrochloride Cisplatin

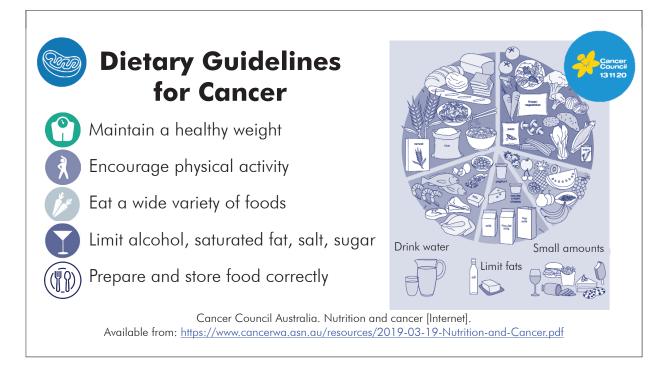


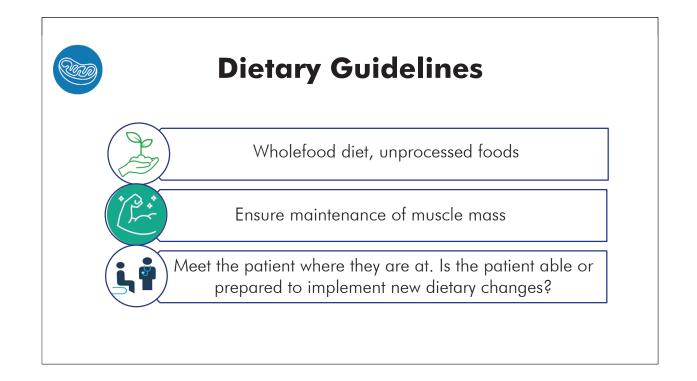


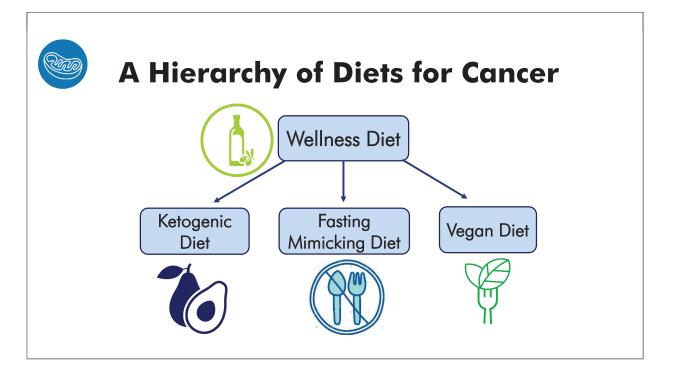
References: Caution for STF/FMD in Cancer Patients

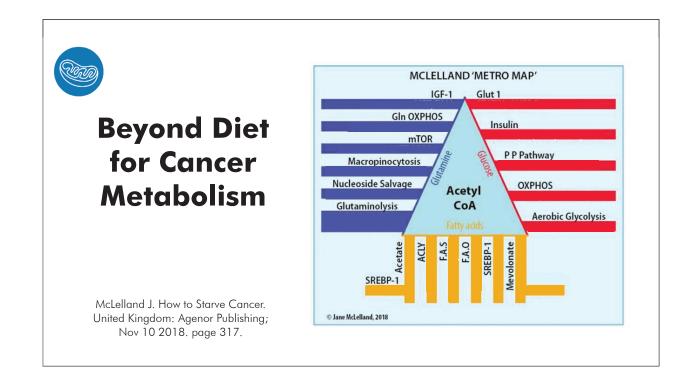

- de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. J Exp Clin Cancer Res. 2019 May 22;38(1):209. doi: 10.1186/s13046-019-1189-9.
- Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017 Feb;36(1):11-48. doi: 10.1016/j.clnu.2016.07.015.
- Caccialanza R, Aprile G, Cereda E, Pedrazzoli P. Fasting in oncology: a word of caution. Nat Rev Cancer. 2019 Mar;19(3):177. doi: 10.1038/s41568-018-0098-0.
- Nencioni A, Caffa I, Cortellino S, Longo VD. Reply to 'Fasting in oncology: a word of caution'. Nat Rev Cancer. 2019 Mar;19(3):178. doi: 10.1038/s41568-018-0100-x.
- .

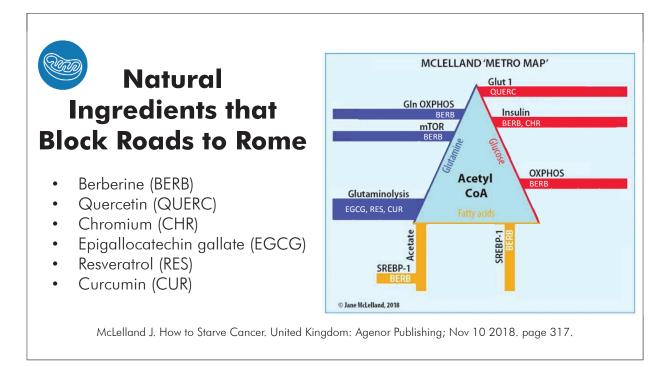


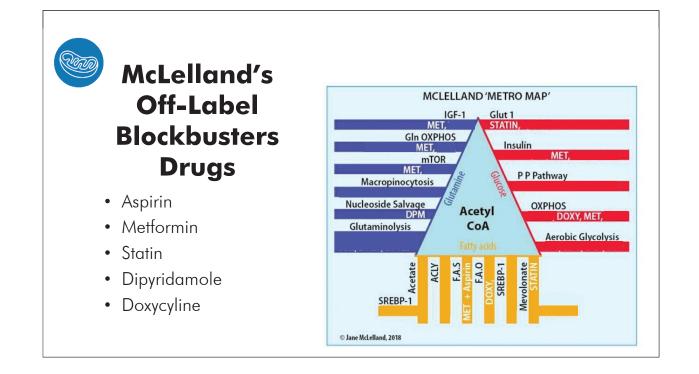




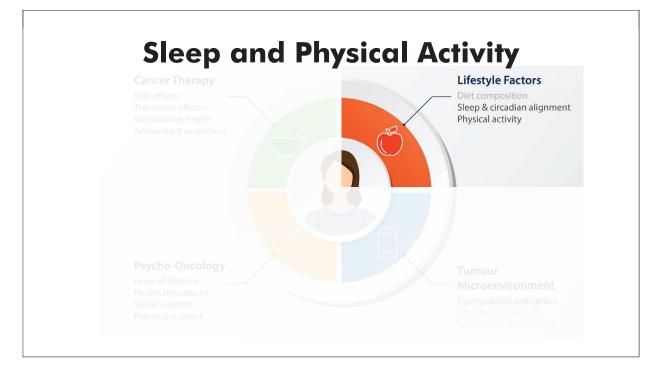








References: Berberine Shows Promise, Blocking All Roads to Rome


- Xu J, et al. Anticancer effect of berberine based on experimental animal models of various cancers: a systematic review and meta-analysis. BMC Cancer. 2019 Jun 17;19(1):589. doi: 10.1186/s12885-019-5791-1.
- Ortiz LM, et al. Berberine, an epiphany against cancer. Molecules. 2014 Aug 15;19(8):12349-67. doi: 10.3390/molecules190812349.
- Mortazavi H, et al. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drugassociated resistance. Eur J Med Chem. 2020 Feb 1;187:111951. doi: 10.1016/j.ejmech.2019.111951.
- Zhang C, et al. Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review. Front Pharmacol. 2020 Jan 15;10:1461. doi: 10.3389/fphar.2019.01461.
- Wang Y, et al. The Anti-Cancer Mechanisms of Berberine: A Review. Cancer Manag Res. 2020 Jan 30;12:695-702. doi: 10.2147/CMAR.S242329.
- Habtemariam S. Recent Advances in Berberine Inspired Anticancer Approaches: From Drug Combination to Novel Formulation Technology and Derivatization. Molecules. 2020 Mar 20;25(6). pii: E1426. doi: 10.3390/molecules25061426.
- Hallajzadeh J, et al. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol. 2020 Apr 17;37(6):49. doi: 10.1007/s12032-020-01367-9.

Dysregulated Cellular Energetics

- Cancer cells will find a way to fuel their energy needs
- Diets can help to target drivers of cellular metabolism
- Consider non-dietary measures: glutamine and berberine

SLEEP AND EXERCISE

Epidemiology of Sleep

Short sleep associated with breast cancer *in Asia* (RR 1.53 to 1.62)

Long sleep associated with colorectal cancer (RR 1.20)

Sleep-disordered breathing associated with cancer (RR 1.40)

Erren TC, et al. Chronobiol Int. 2016;33(4):325-350. doi:10.3109/07420528.2016.1149486. Palamaner Subath Shanther et al, 2012. Sleep Med,

SLEEP AND EXERCISE

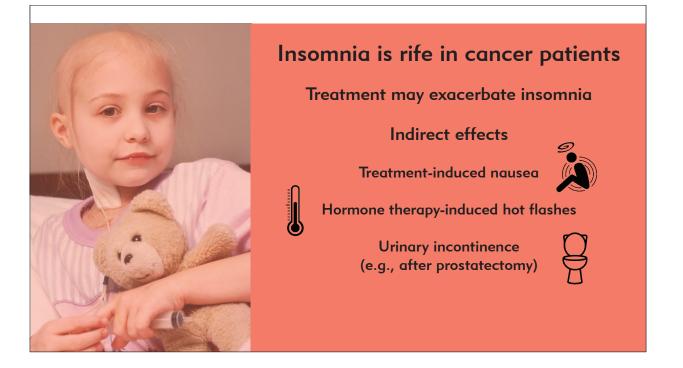
Hypothesis: sleep apnoea *strongly* increases the risk of developing cancer

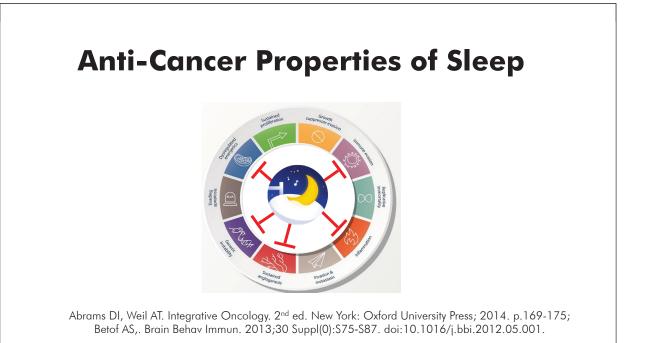
Dose-response: severe OSA (hypoxaemia index 11.2%): 8.6 times as likely to die of cancer

Polysomnography

Apnoea-hypopnea index > 30: 4.8 times as likely to die of cancer

Hypoxaemia index also associated with cancer mortality in patients


Nieto FJ, et al. Am J Respir Crit Care Med. 2012;186(2):190-194. doi:10.1164/rccm.201201-0130OC.; Martínez-García MA, et al. Sleep Med. 2014:15(7):742-748. doi:10.1016/j.sleep.2014.01.020.



≥

Circadian system disruption: artificial light at night

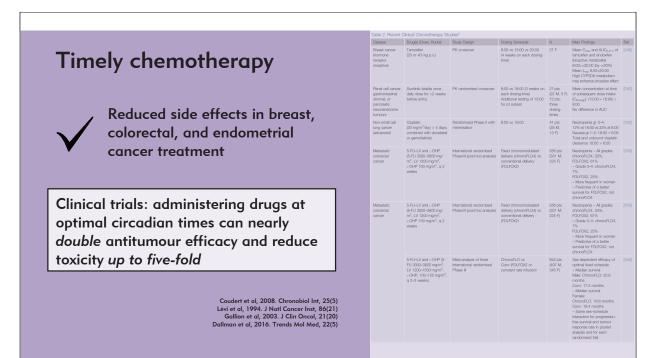
Light at night increased therapy resistance in a rat model of breast cancer

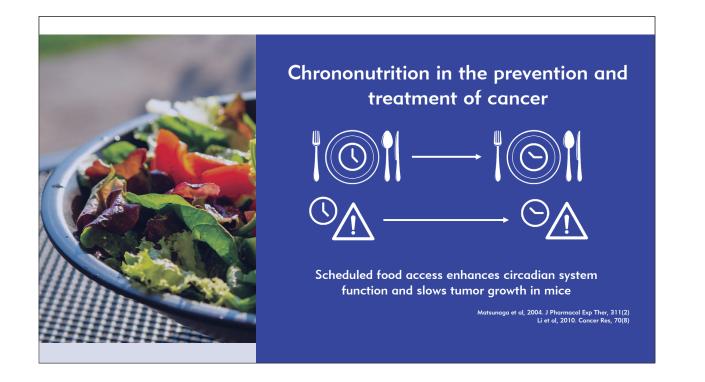
Some epidemiological study authors have reported associations between light at night and risk of breast cancer. Others have not

> Dauchy et al, 2014. Cancer Res, 74(15) Hurley et al, 2014. Epidemiology, 25(5) Johns et al, 2018. Br J Cancer, 118(4)

Circadian system disruption: mistimed nutrition

Women who fast for ≥ 13 h each day have a lower risk of breast cancer

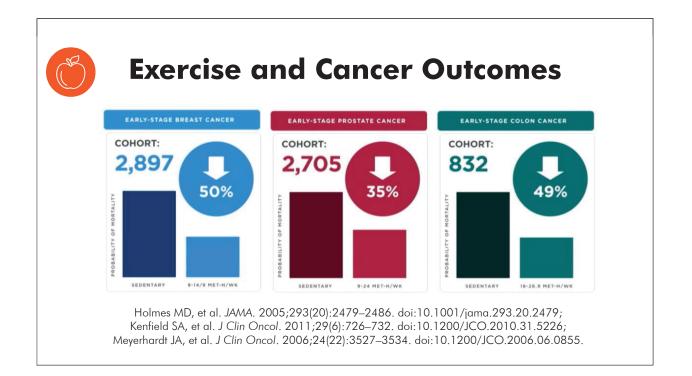

Eating dinner before 9:30 PM associated with reduced risk of prostate cancer and breast cancer


In mice, time-restricted feeding alters diurnal changes in skin sensitivity to UVBinduced DNA damage

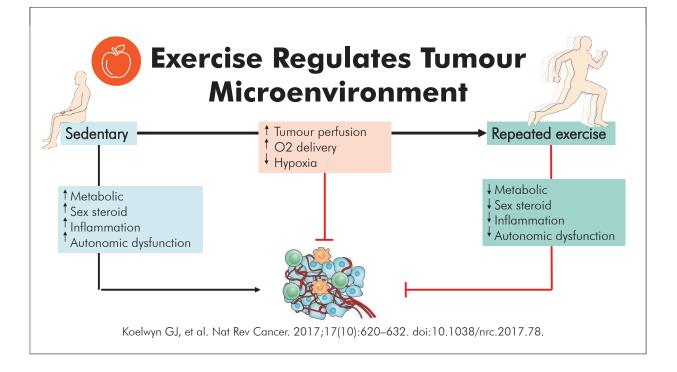
> Marinac et al, 2016. JAMA Oncol, 2(8) Srour et al, 2018. Int J Cancer, 143(10) Andersen et al, 2017. Cell Rep, 20(5)

Chrononutrition in the prevention and treatment of cancer

Caloric period of 6 to 12 h each day (upper end of range if bodyweight loss is a problem)

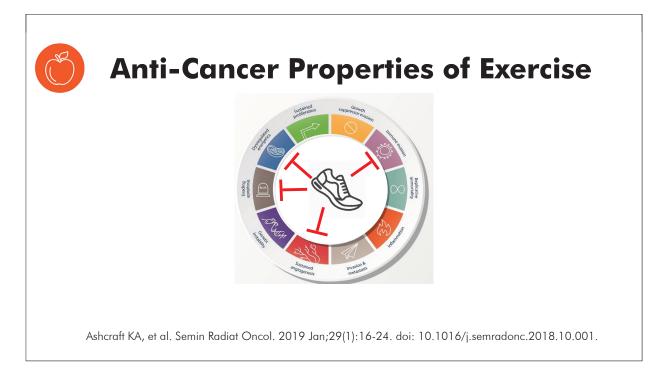

Breakfast \geq 30 mins after natural wake time

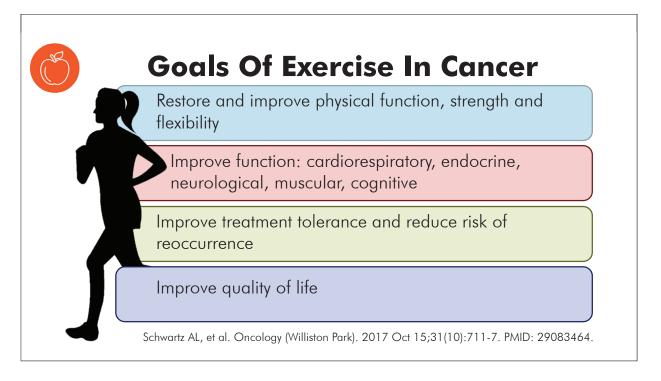
Finish final meal ≥ 2 h before bedtime

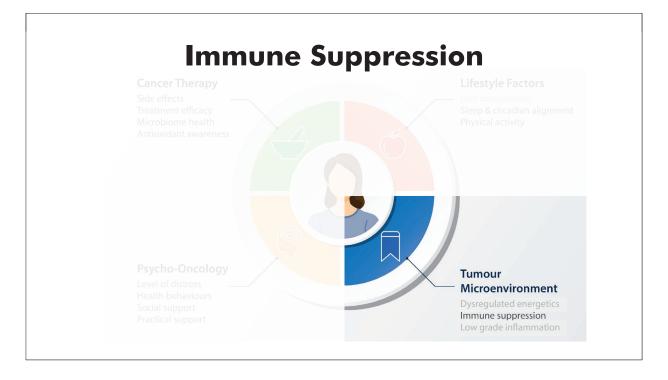

3 to 6 h between meals

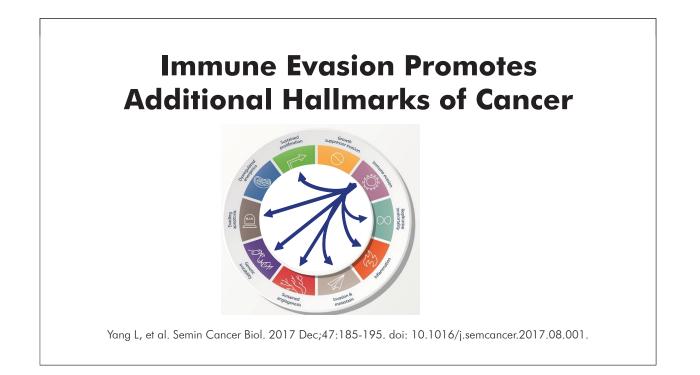
Consume the majority of calorie, carbohydrate, and fat intakes in the first half of the caloric period

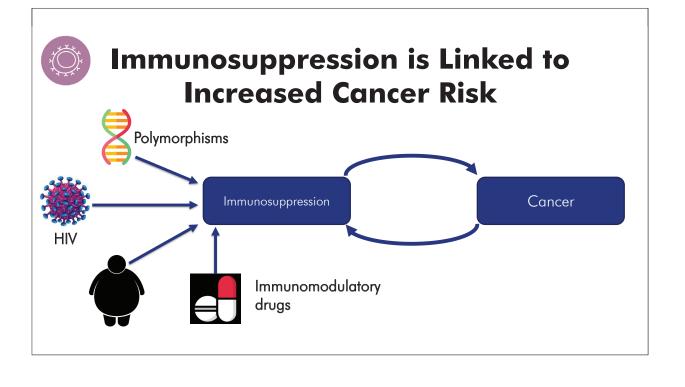
At caloric events, consume carbohydrate-rich items last Regularity is key

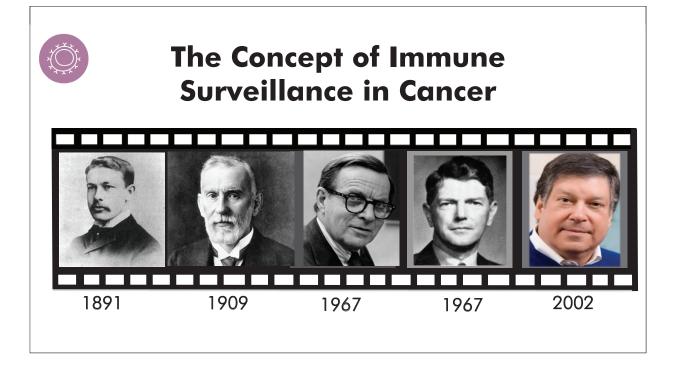


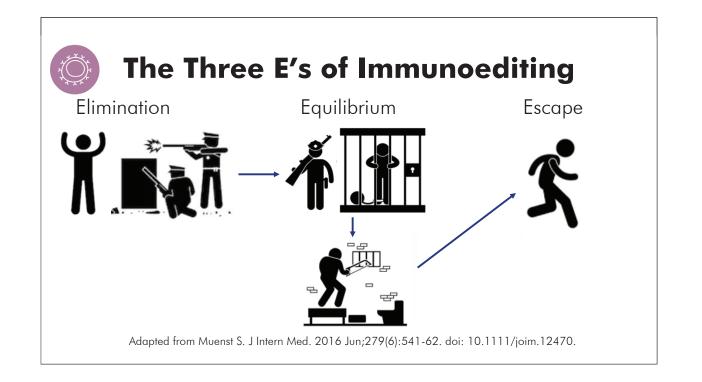


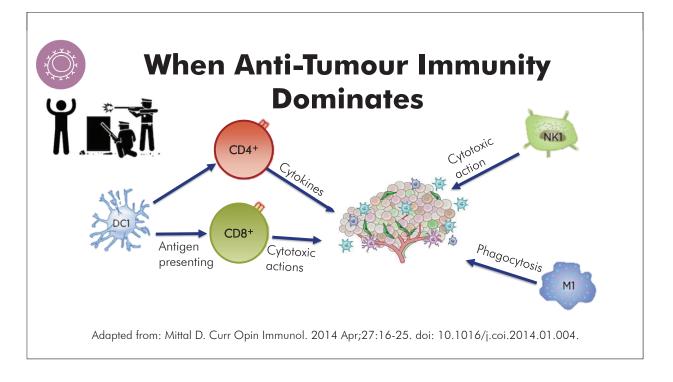


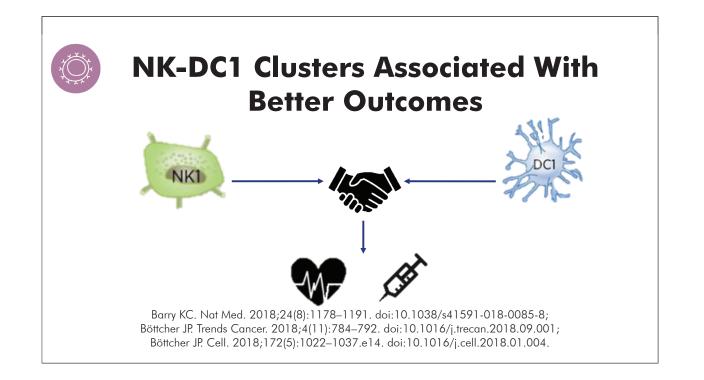


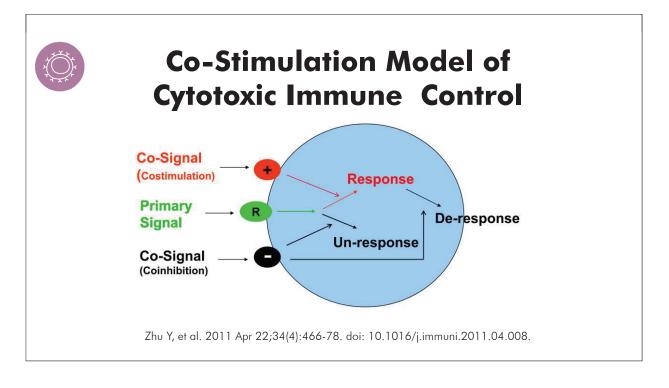


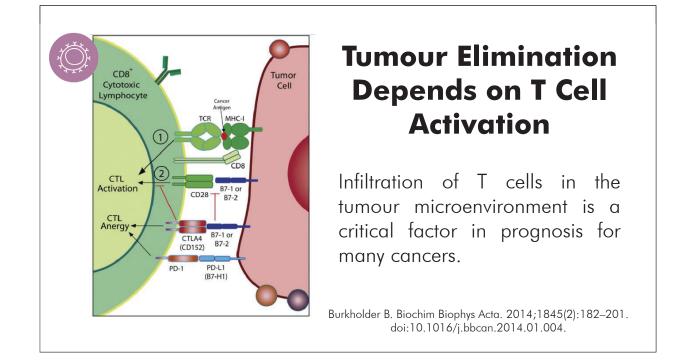


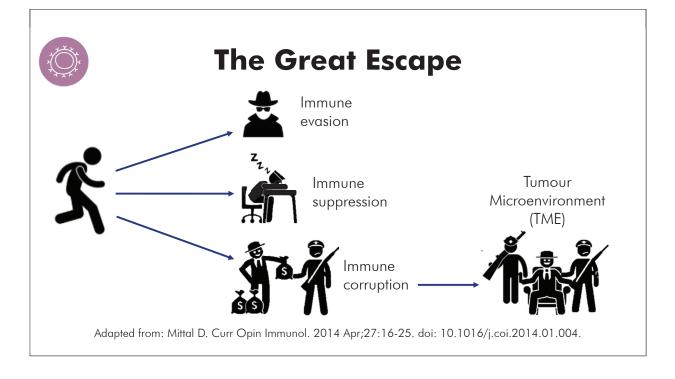


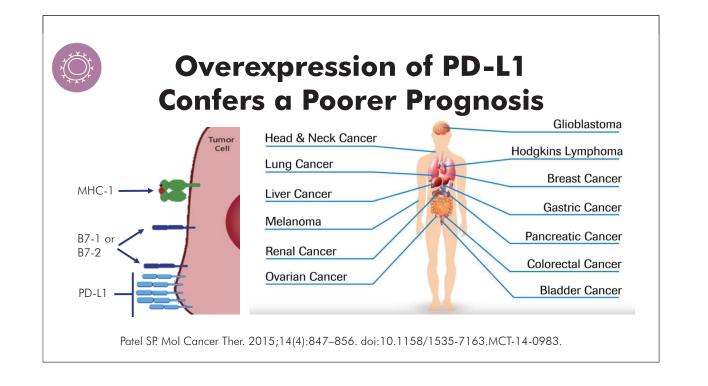


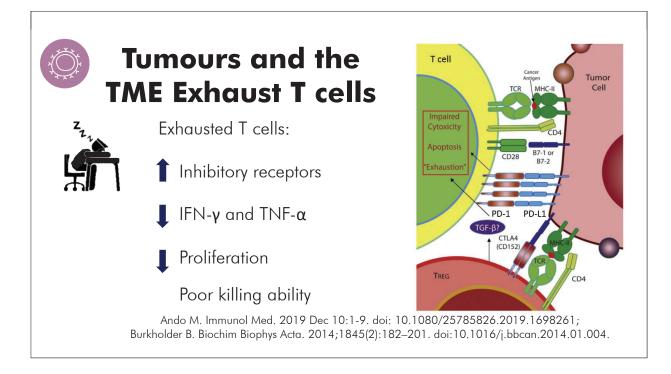


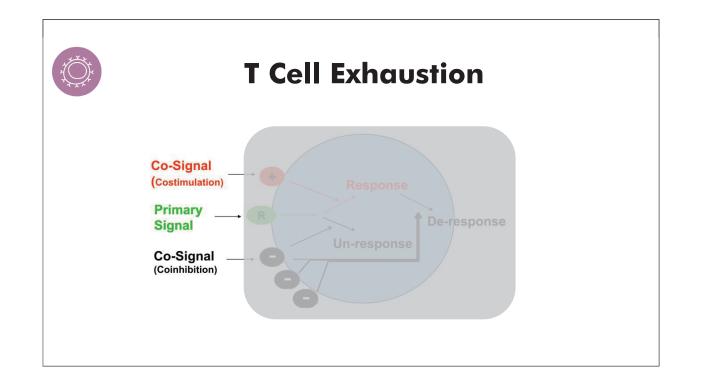


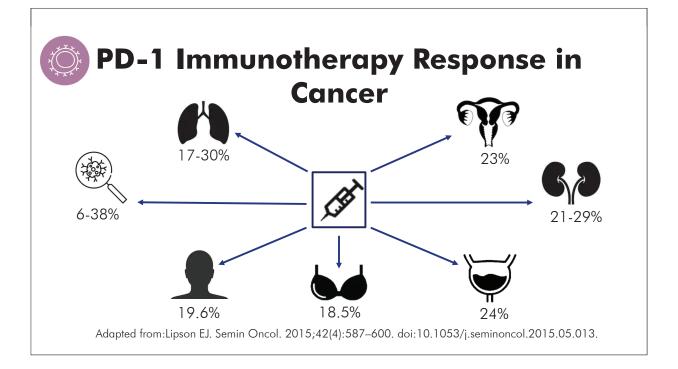


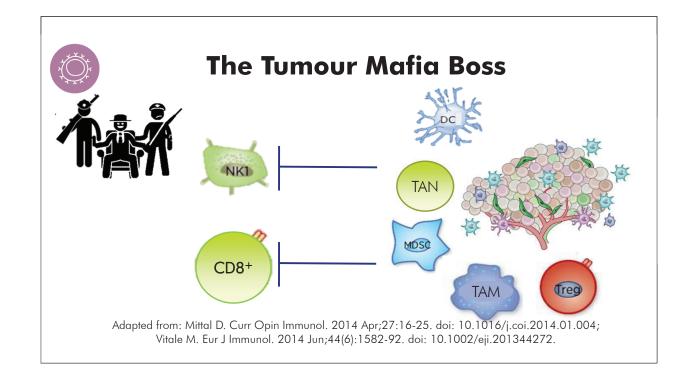


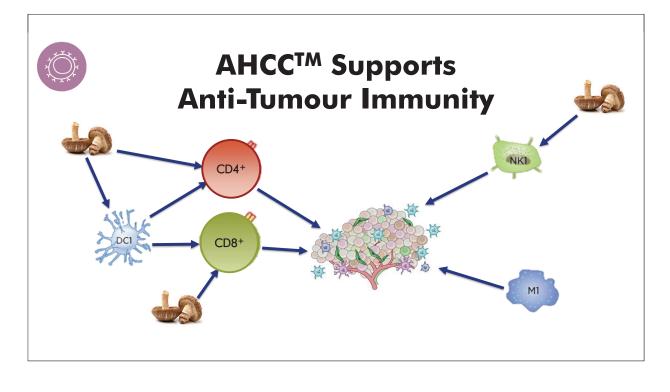


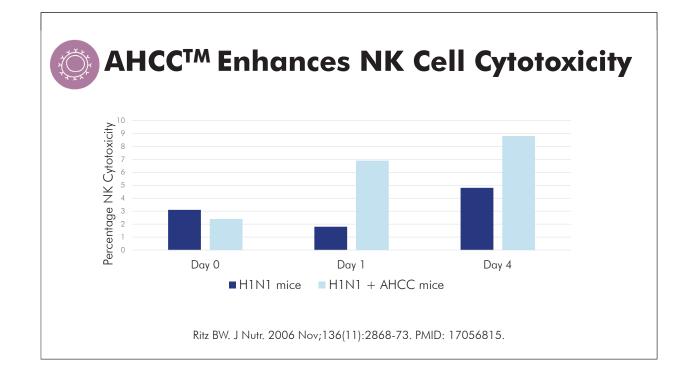


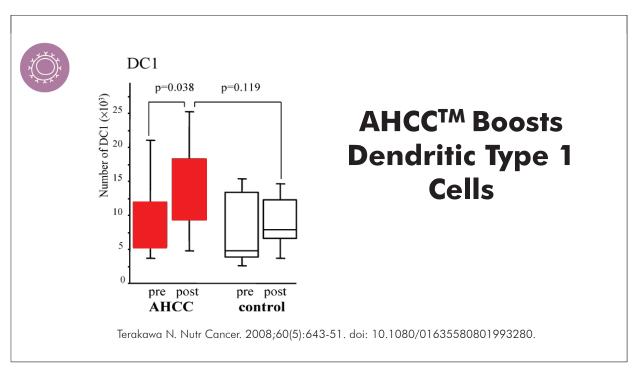


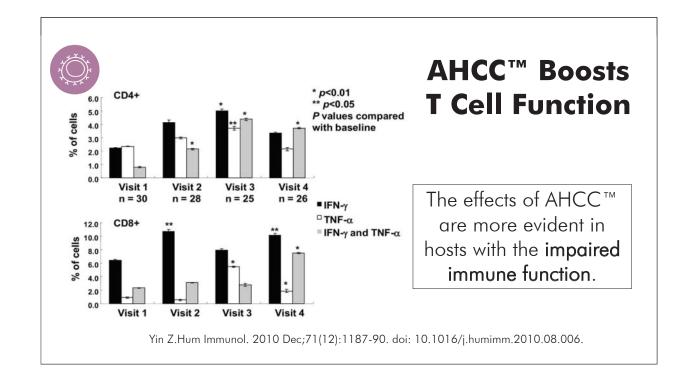


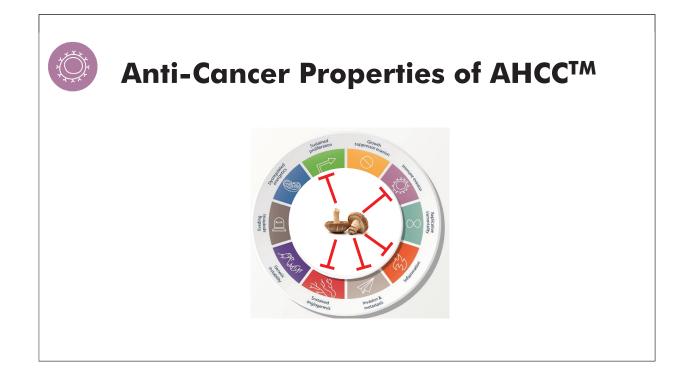












AHCC[™] Enhances Immunity with Chemotherapy

Group	CD8+ (%)	NK (%)	CD4+/CD8+ (%)
Control	8.7	6.7	2.5
5-fluorouracil (5-FU)	9.6	5.0	2.8
5-FU + AHCC [™]	10.3	10.7 - 🔺 50%	3.9

Higher CD4+/CD8+ ratio associated with stronger immunological response

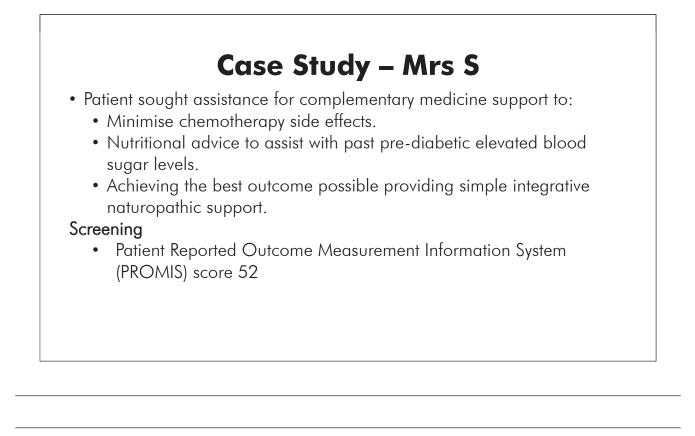
Cao Z. Nutr Res Pract. 2015 Apr;9(2):129-36. doi: 10.4162/nrp.2015.9.2.129.

'e

IMMUNE SUPPRESSION

AHCC™ and Ginger

Key Actions:


- Immune enhancement, surveillance and modulation
- Gastrointestinal support
- Anti-inflammatory
- Anti-emetic
- Autonomic nervous system modulation

Clinical Applications:

- Cancer support o Improves survival rate,
 - enhances chemotherapy efficacy
 - Reduce anticancer drug treatment side effects
- Chronic and critical infections

CASE STUDY: BREAST CANCER

CASE STUDY: BREAST CANCER

Case Study: Mrs S – Medications

Oncology treatment plan

- AC-T chemotherapy combination specific for breast cancer:
 - Initial doxorubicin and cyclophosphamide 21 day cycle for 4 cycles followed by 12 weekly paclitaxel sessions.
- Pegfilgrastim and dexamethasone will also be used throughout the treatment cycles.
- Surgery will follow chemotherapy.
- 4 weeks of daily radiation will follow surgery.

After first full round of chemotherapy, nausea, poor energy and hot flushes were having a very significant impact on Mrs S quality of life. Treatment tailored to reduce these effects.

Case Study: Mrs S – Initial Prescription

Supplement Prescription (prior to second chemotherapy cycle)

- AHCCTM and Ginger 2 capsules twice per day avoided the day of and day after chemotherapy infusion (for 8 weeks).
- Bovine Protein for Good Health 1-2 tablespoons daily
- Nausea and hot flush herbal homeopathic drops

Dietary Prescription (prior to second chemotherapy cycle)

- Whole food, blood glucose balancing, low carbohydrate, quality protein, anti-inflammatory diet
- Time Restricted Feeding -16:8 schedule of fasting.
- Fast around chemotherapy infusion to minimise side effects.

CASE STUDY: BREAST CANCER

Case Study: Mrs S – Results

Week 4

- Patient completed third cycle of chemotherapy. Oncologist advised tumour is now more palpable.
- Hot flushes have settled.
- PROMIS questionnaire shows improvements in fatigue and nausea.

Week 8

- Mammogram and CT scan showed complete metabolic response to chemotherapy.
- Natural treatment suspended in preparation for surgery.

Case kindly provided by Carla Wrenn, Clinic: Peninsula Herbal Dispensary, Mornington, VIC

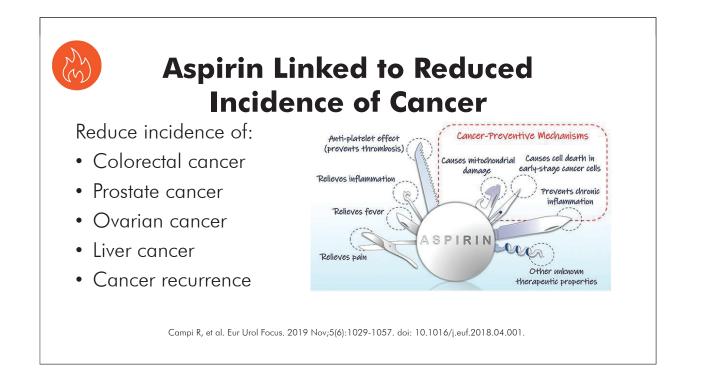
'e

CASE STUDY: BREAST CANCER

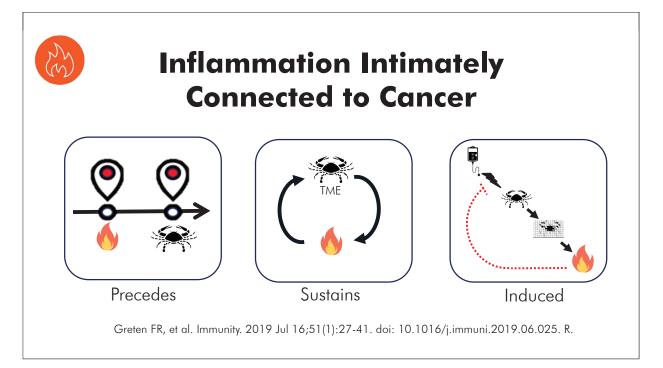
AHCC™ and Ginger

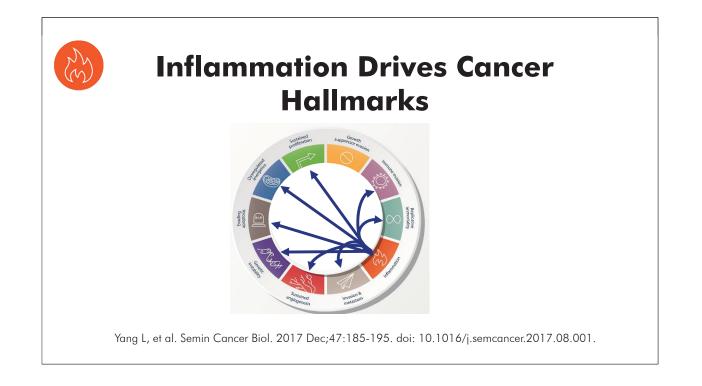
Key Actions:

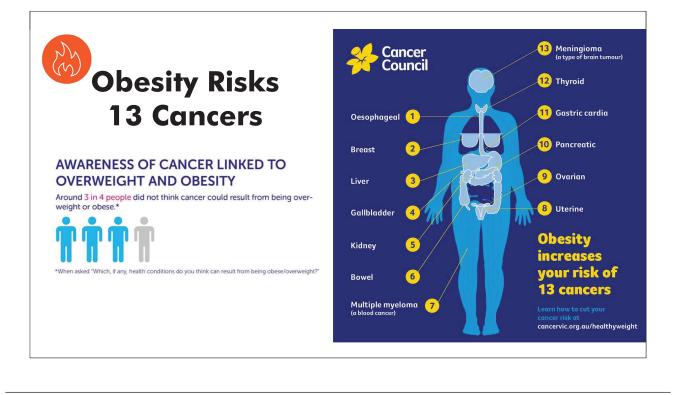
- Immune enhancement, surveillance and modulation
- Gastrointestinal support
- Anti-inflammatory
- Anti-emetic
- Autonomic nervous system modulation

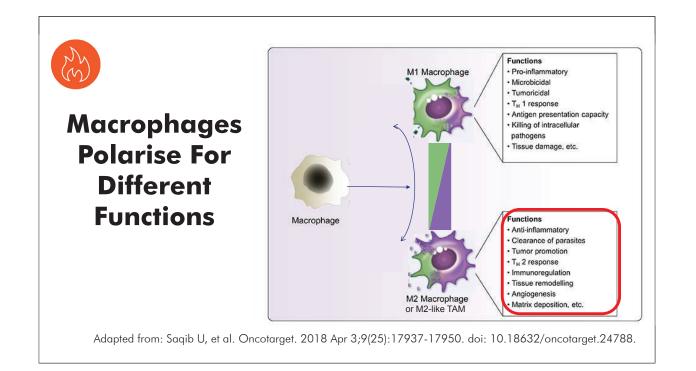

Clinical Applications:

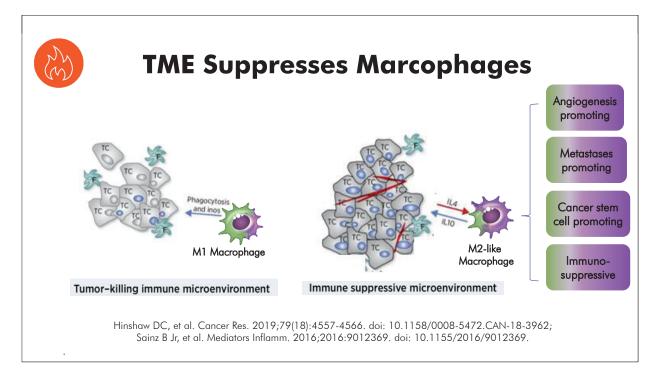
- Chronic and critical infections
- Cancer support

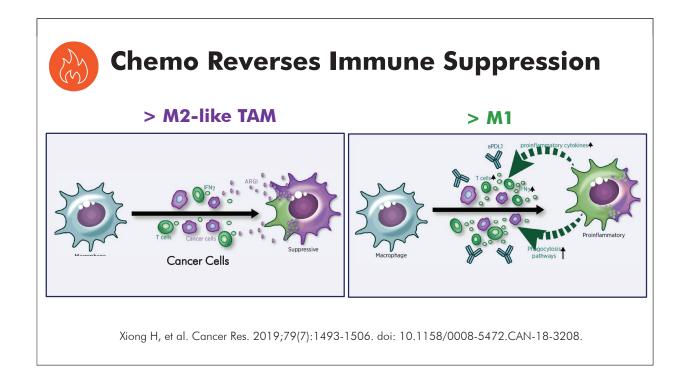

 Improves survival rate,
 enhances chemotherapy
 efficacy
 - Reduce anticancer drug treatment side effects

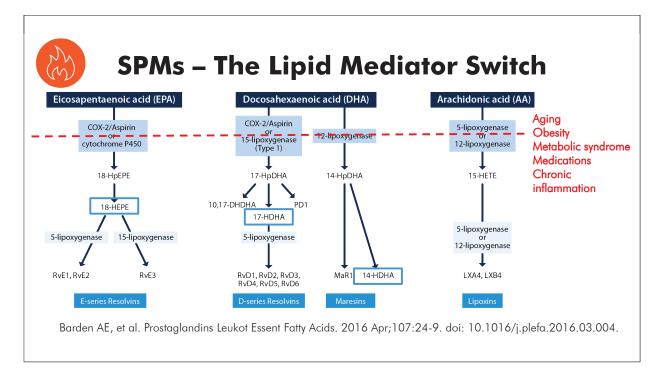


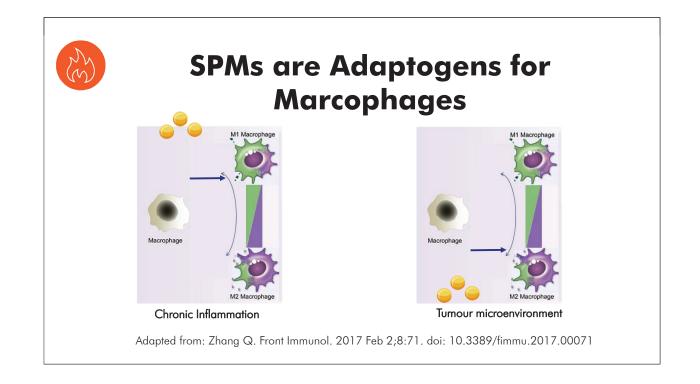


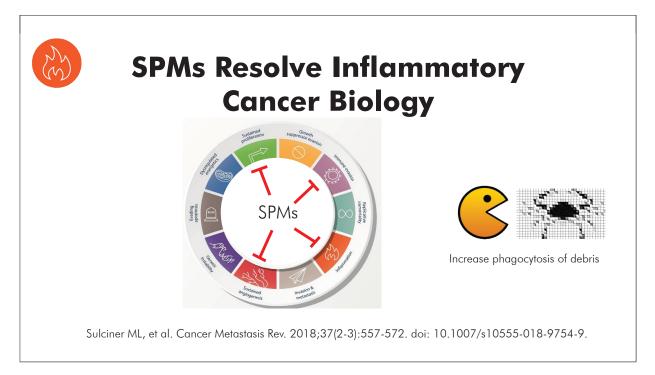


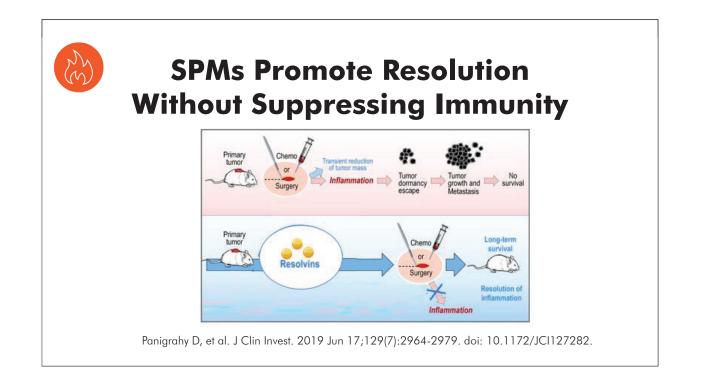




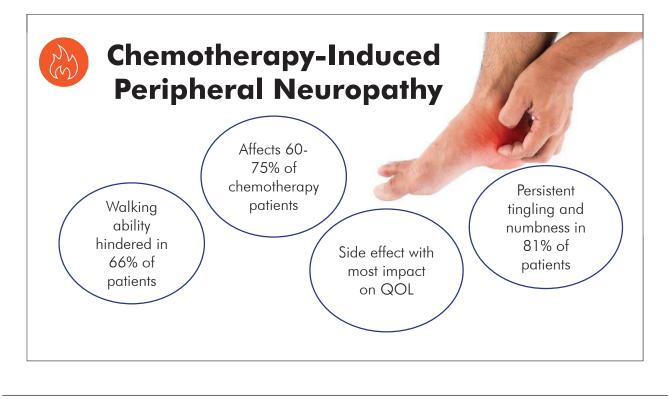


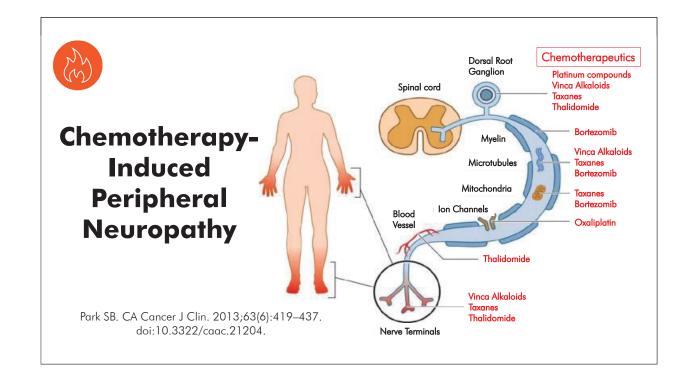



SPECIALISED PRO-RESOLVING MEDIATORS



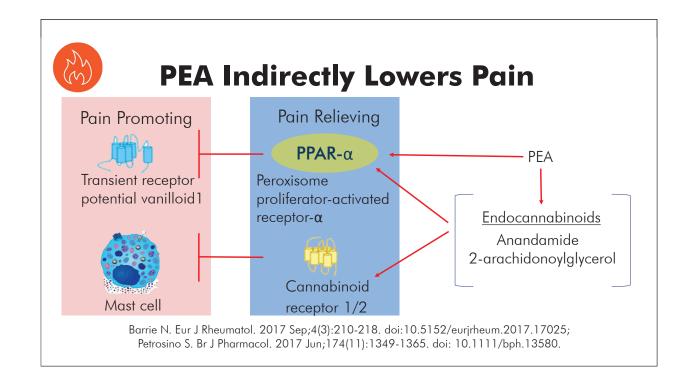
SPECIALISED PRO-RESOLVING MEDIATORS

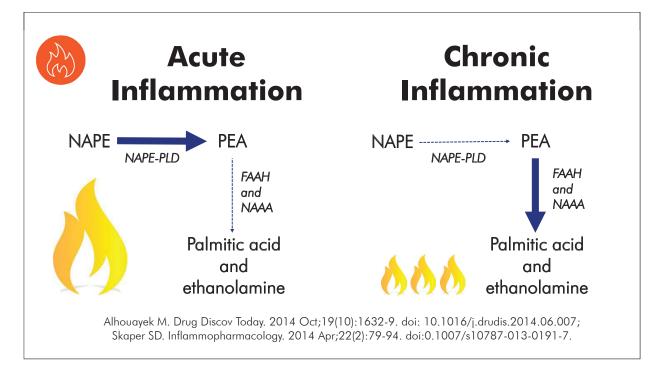


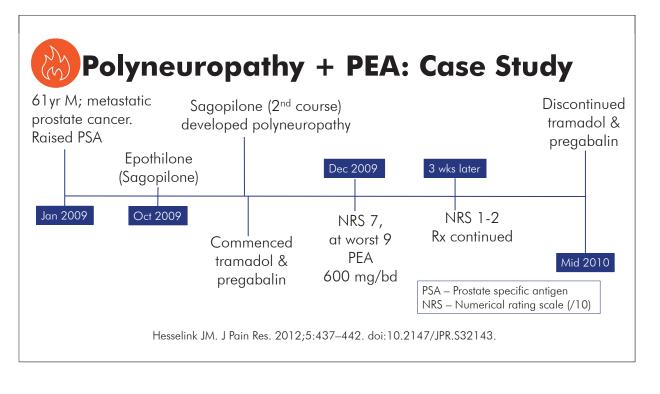


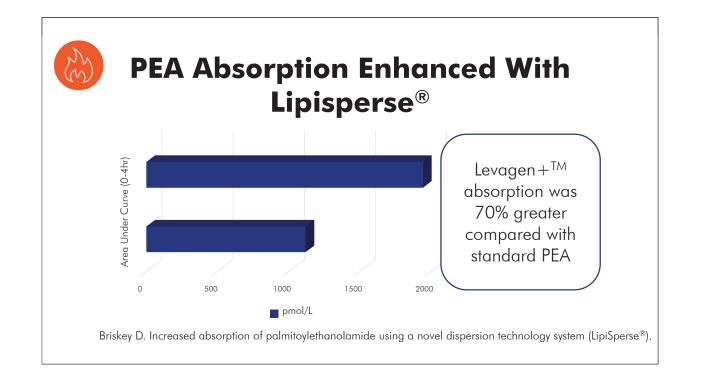
SPECIALISED PRO-RESOLVING MEDIATORS

-	cialised Pro-Resolving Mediators – Feedback
The results I'm	seeing on ESR is incredible, such as two recent patients:
• The ESR we	ent from 59 to 10, after being elevated for 2.5 years. She has previously been on with no change. She could only afford one product and SPM was used.
has manag chemother	I patient the ESR went from 65 to 5 , after being elevated for over 10 years. This patient ed Waldenström. Since treating her for the past 3 years she has not required any apy which she was on a 6 monthly cycle for 7 years to control. After starting SPM mid the ESR has returned to normal. Today this patient turns 81.
Clinical Notes : Wa	Idenstrom's.


'e







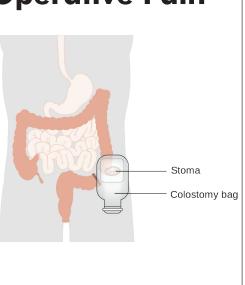
PEA Lowered Peripheral Neuropathy in Myeloma Patients				
	Pre-treatment Mean +/- SD	Post-treatment Mean +/- SD		
Pain	4.5 +/- 1.2	3.4 +/- 1.0		
(Numerical Rating Scale)				
24% Reduction in pain compared with baseline				
Truini A. CNS Neurol Disord Drug	Targets. 2011 Dec;10(8):916-20	0. PMID: 22229320.		

Highly Bioavailable Palmitoylethanolamide (PEA) With Endocannabinoid Action

Key Actions:

- ECS Modulation
- Analgesic
- Anti-inflammatory
- Neuroprotective

Clinical Applications:


- Chronic and neuropathic pain
- Neurodegenerative conditions

CASE STUDY: POST OPERATIVE PAIN

Case Study: Jim - Post Operative Pain

- Male 63yrs post-op ileostomy for colorectal cancer.
- Experiencing pain from surgical stitches and port insertion (from surgical recovery).
- Grey pallor, irritable and 8/10 pain.
- Diagnosed Sept 2019, followed by 5 weeks chemo- and radiotherapy.

" I'm irritable because of the pain. I can't do the things I usually do. Physically I'm struggling."

Jim – Initial Treatment

Initial post-op prescription:

- AHCCTM and Ginger 2 capsules twice daily
- Specialised Pro-Resolving Mediators 2 capsules twice daily
- BCM-95[™]Turmeric and Devil's Claw to Treat Chronic Inflammation— 3 capsules twice daily
- Meta Mag[®] Magnesium and Electrolytes to Rehydrate Without Carbs– 3-4 serves per day

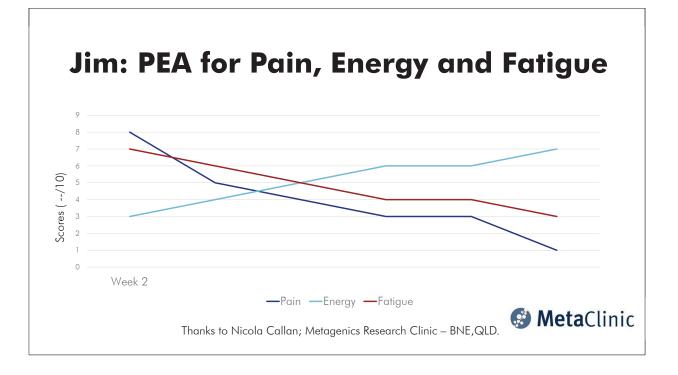
CASE STUDY: POST OPERATIVE PAIN

Jim – Prescription Update

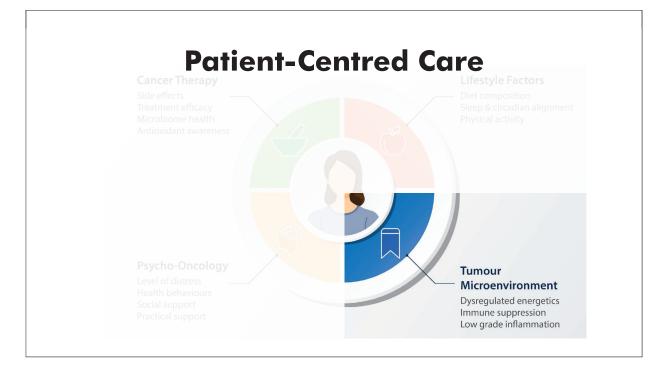
Week 2:

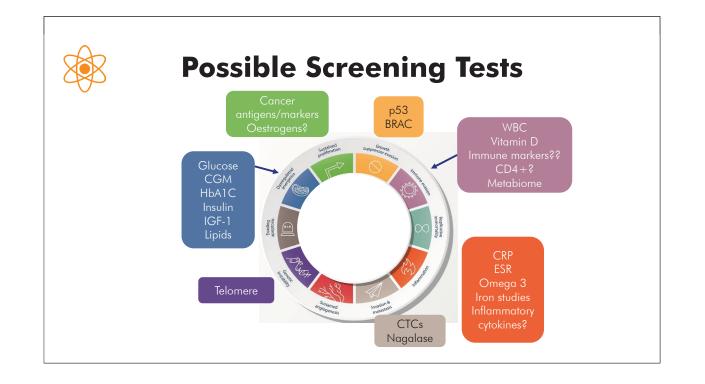
 Added: Highly Bioavailable Palmitoylethanolamide (PEA) With Endocannabinoid Action – 1 capsule three times daily

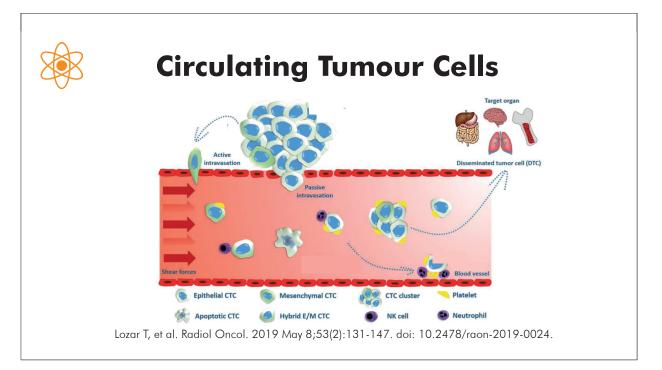
Week 10:

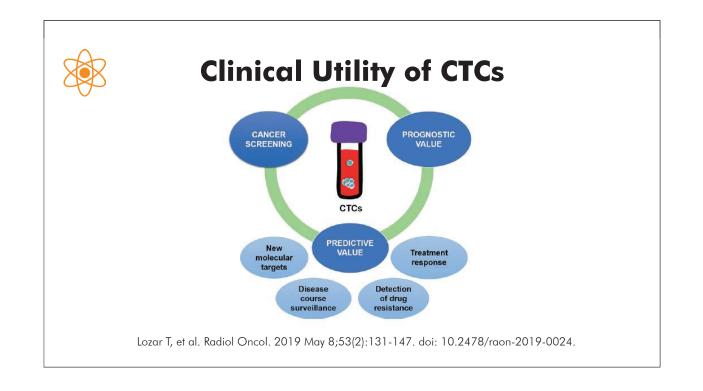

• Reduced (PEA) to - 1 capsule twice daily

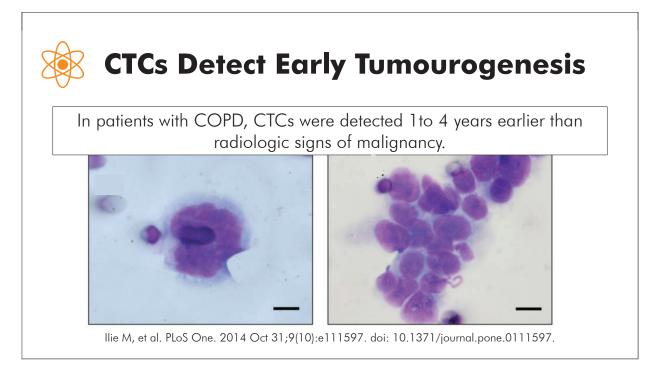
	Baseline (week 2)	Week 8	Week 14
Pain (10 is worst)	8/10	4/10	1/10
Energy (10 is best)	3/10	5/10	7/10
Fatigue (10 is worst)	7/10	5/10	3/10
# Oxycodone/day	4	1	0
# Paracetomol/day	2 to 3	1	0

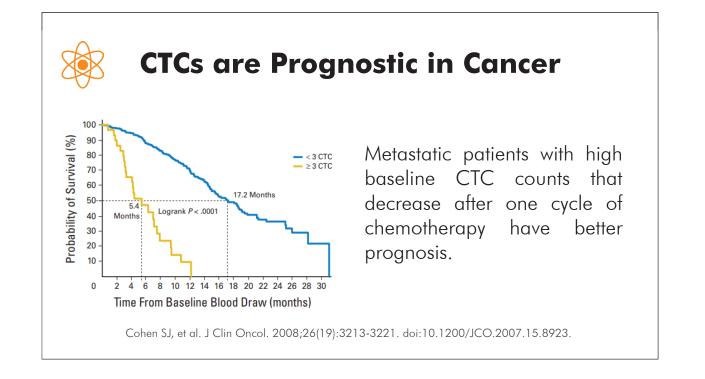


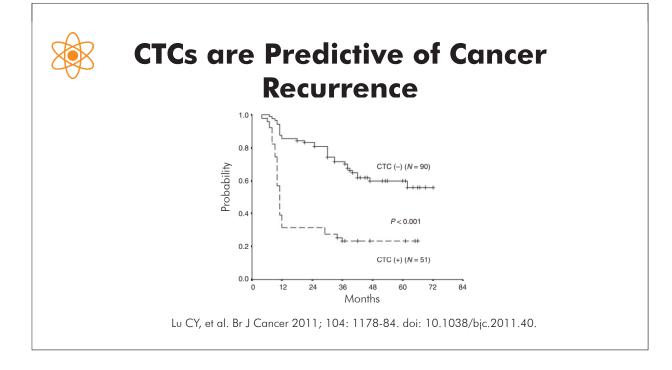


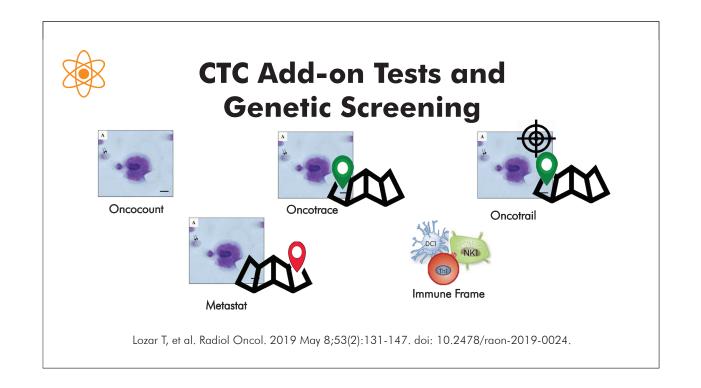


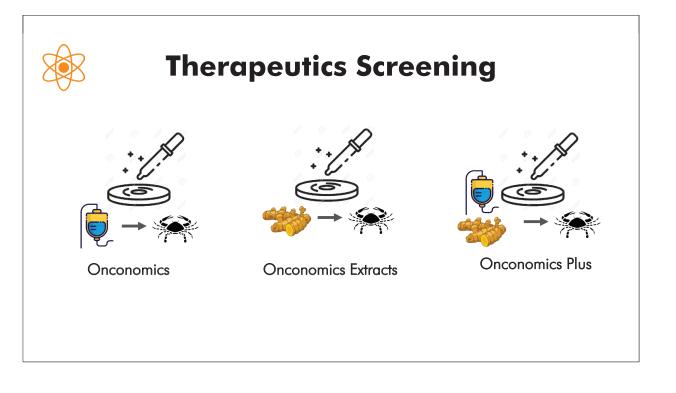

re

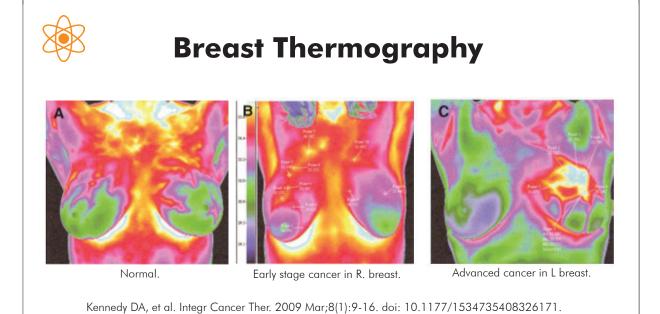


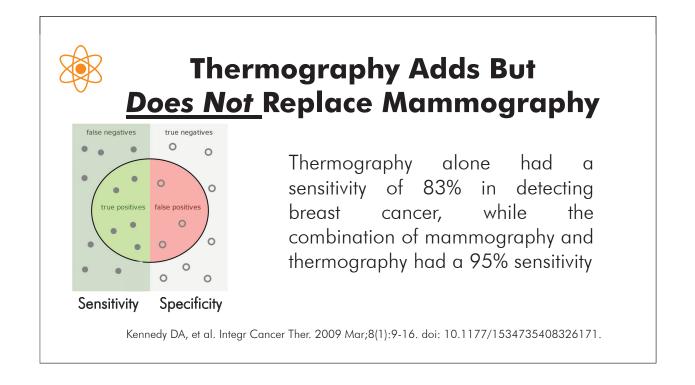


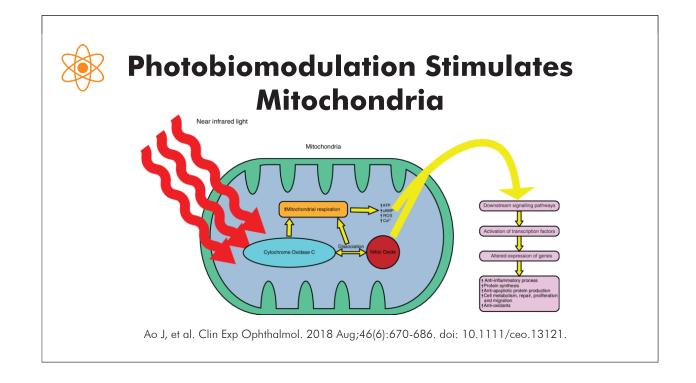


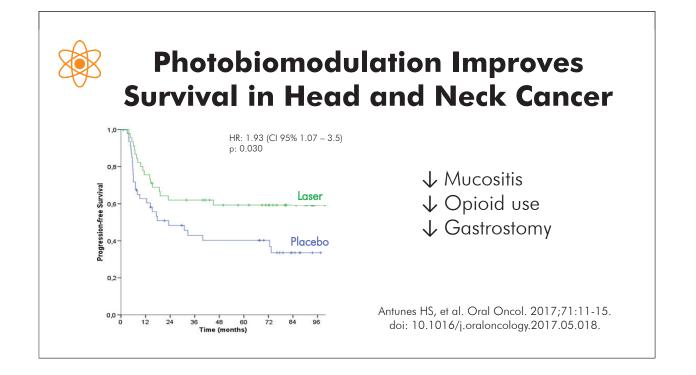


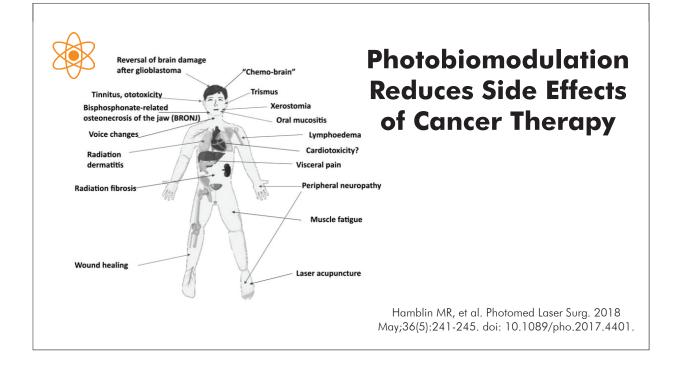


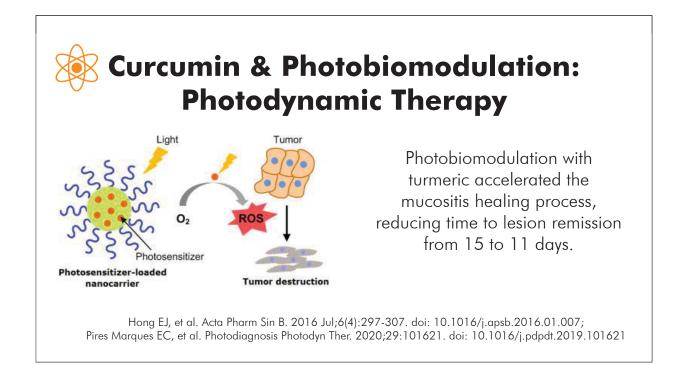




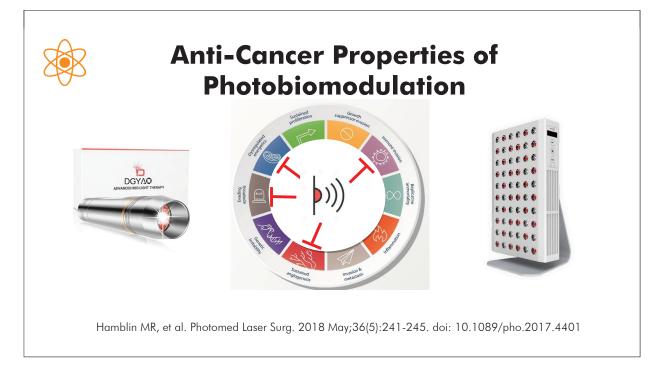


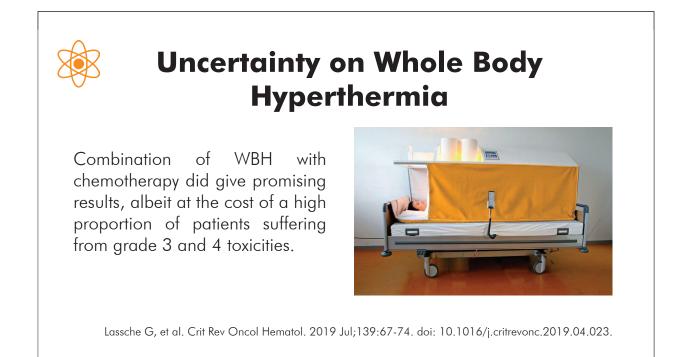


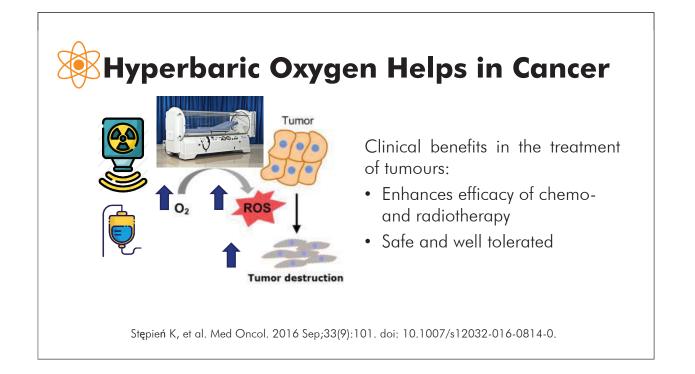

Photobiomodulation Reduces Oral Mucositis



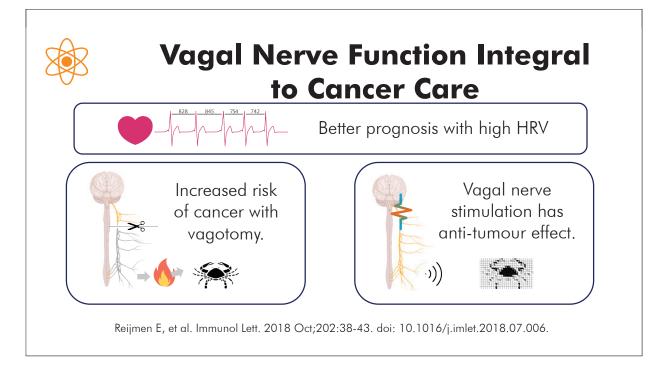
Silva GB, et al. Lasers Med Sci. 2015 Jan;30(1):117-26. doi: 10.1007/s10103-014-1624-2.

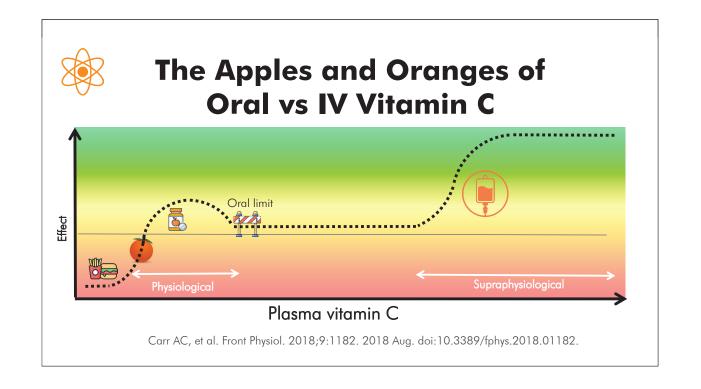




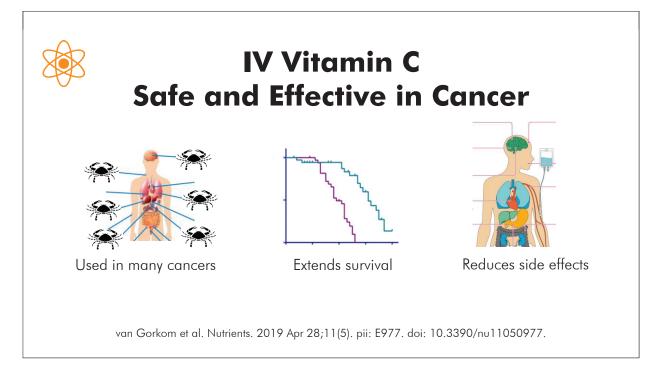


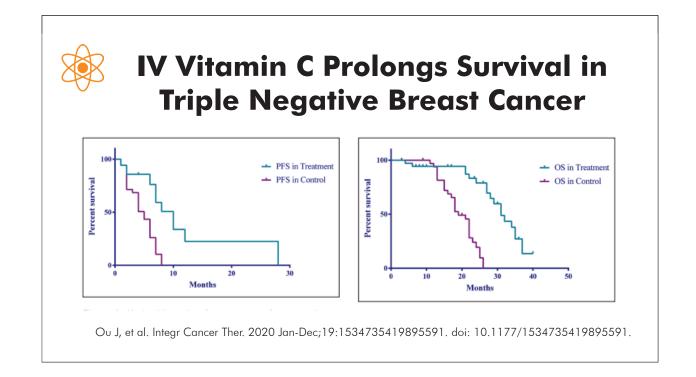
Regional Hyperthermia Provides Benefit

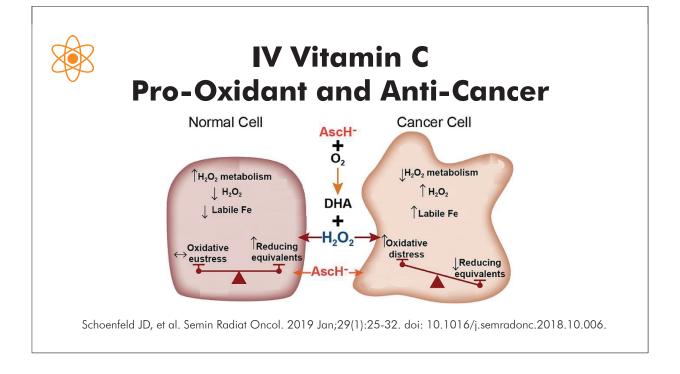


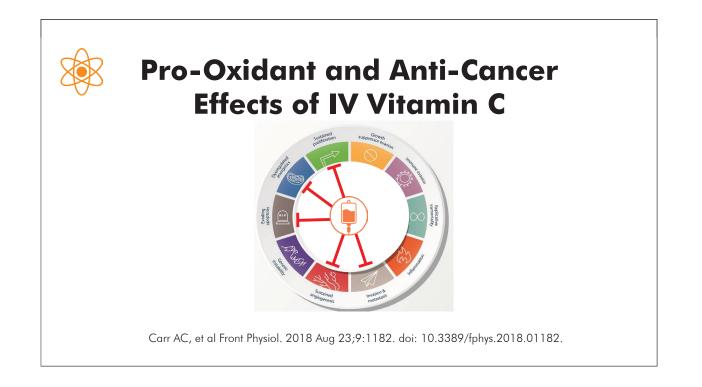

- Adjuvant to radiotherapy
- Breast and head and neck cancers
- Improves survival by 2.5 9 times
- Good safety profile

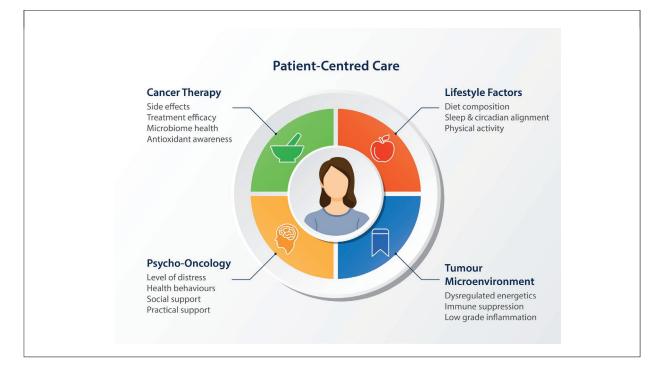
Datta NR, et al. Int J Hyperthermia. 2016;32(1):31-40. doi: 10.3109/02656736.2015.1099746; Datta NR, et al. Int J Radiat Oncol Biol Phys. 2016.1;94(5):1073-87. doi: 10.1016/j.ijrobp.2015.12.361; Hu Y, et als. J Clin Pharm Ther. 2017 Apr;42(2):155-164. doi: 10.1111/jcpt.12498.

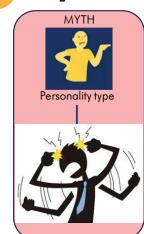








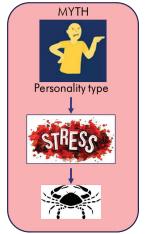



Myth: The "Cancer Personality"

Historically, concepts like the "cancer personality" have had detrimental effects leading, for example, to dysfunctional self-attribution of guilt in cancer patients.

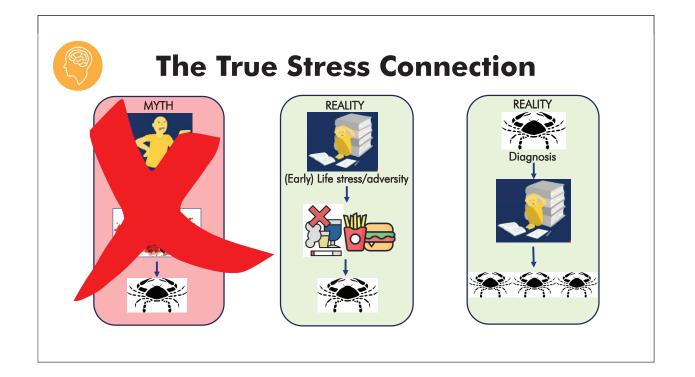
Lang-Rollin I, et al. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

Myth: The "Cancer Personality"

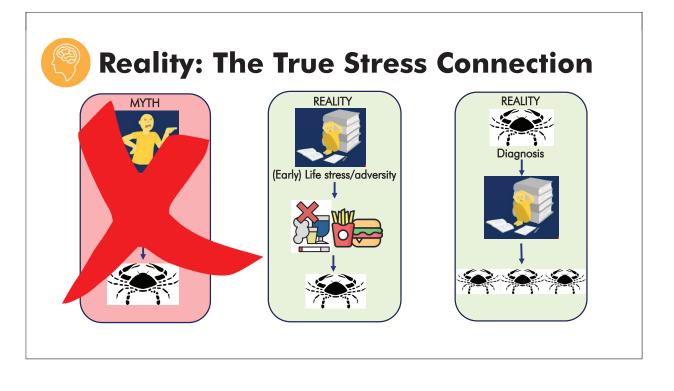


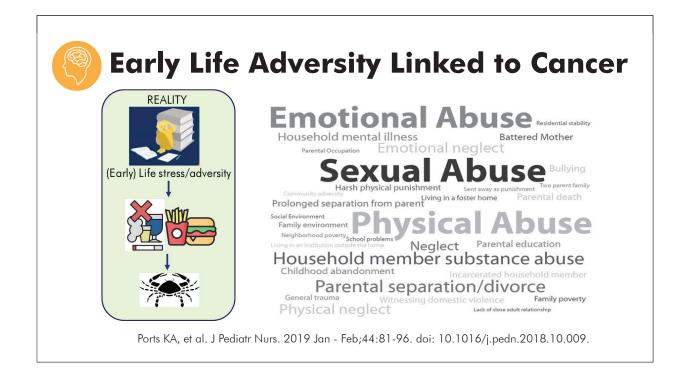
Historically, concepts like the "cancer personality" have had detrimental effects leading, for example, to dysfunctional self-attribution of guilt in cancer patients.

Lang-Rollin I, et al. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

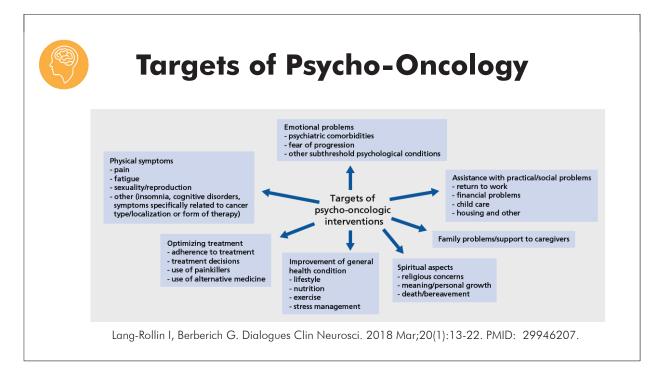


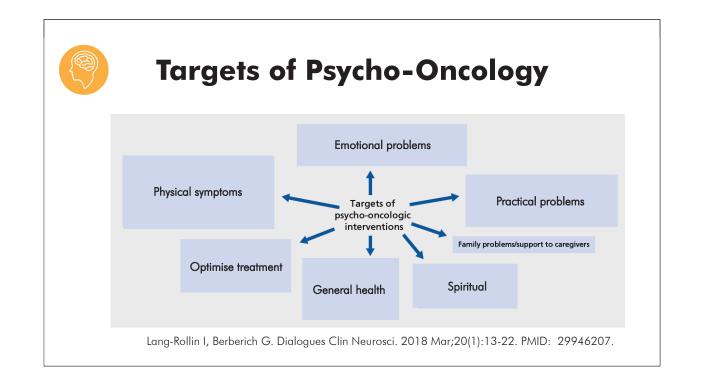
Myth: The "Cancer Personality"

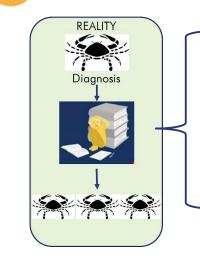


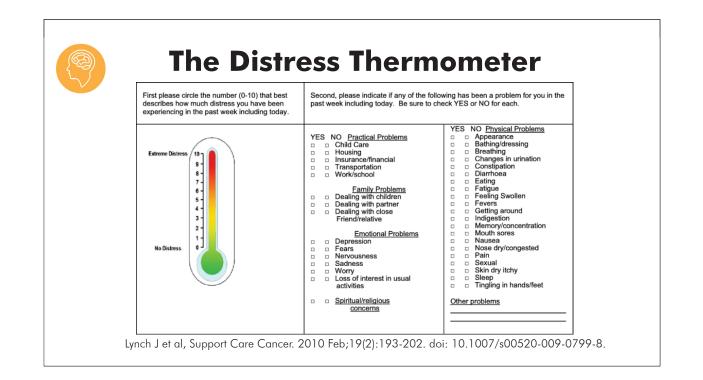

Historically, concepts like the "cancer personality" have had detrimental effects leading, for example, to dysfunctional self-attribution of guilt in cancer patients.

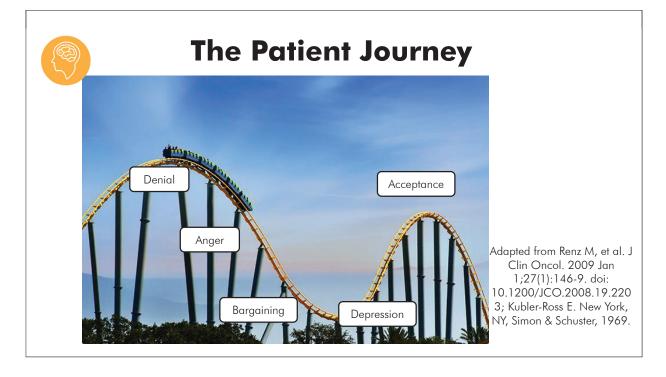
Lang-Rollin I, et al. Dialogues Clin Neurosci. 2018 Mar;20(1):13-22. PMID: 29946207.

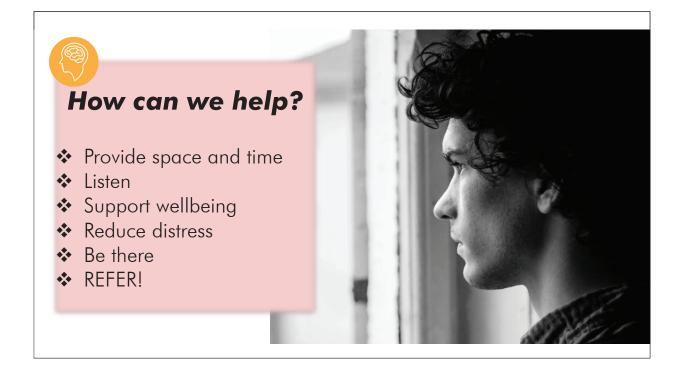




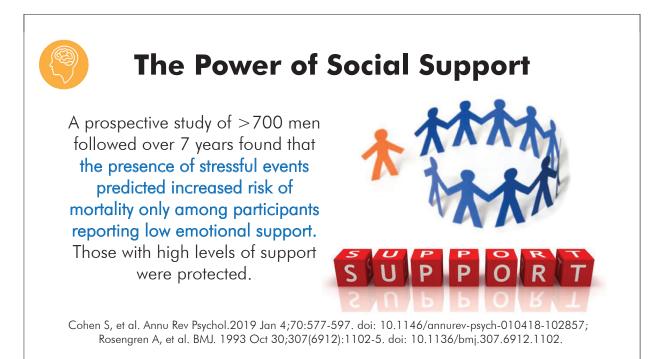


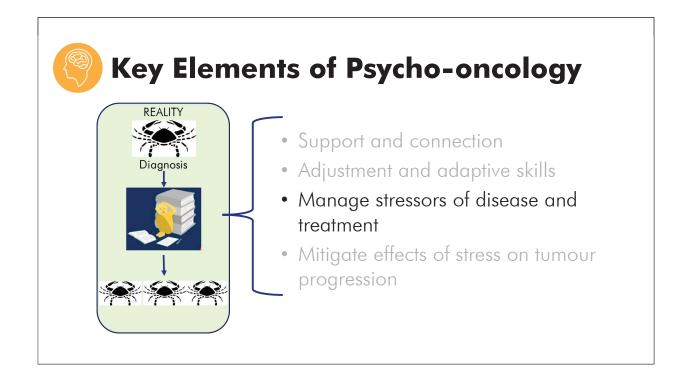


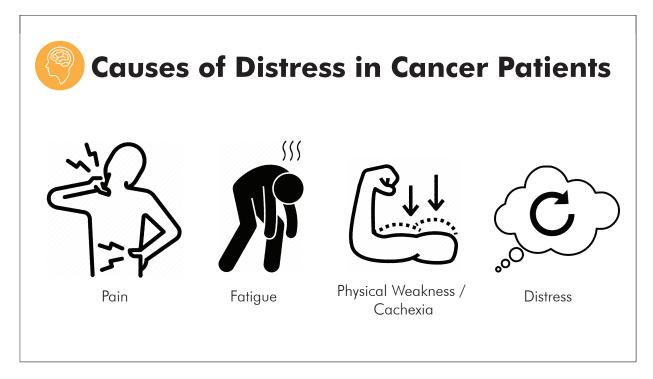

Key Elements of Psycho-oncology

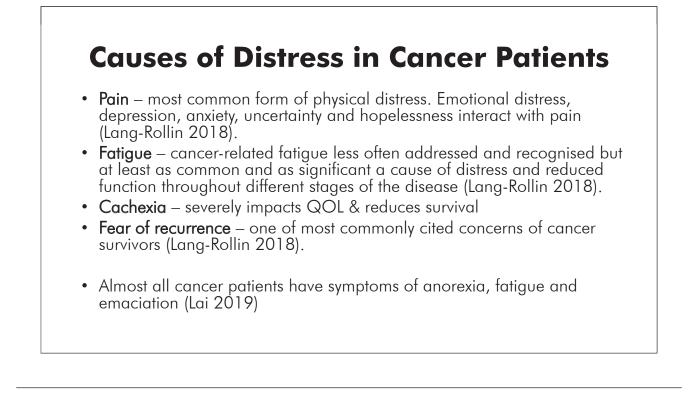


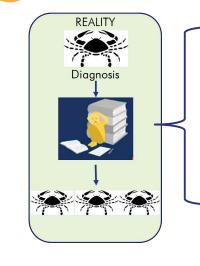
- Support and connection
- Adjustment and adaptive skills
- Manage stressors of disease and treatment
- Mitigate effects of stress on tumour progression



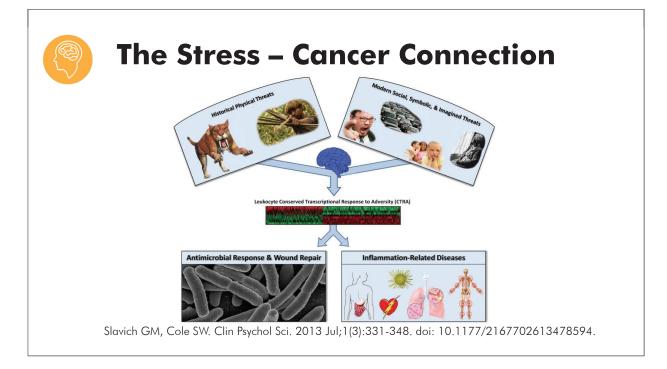




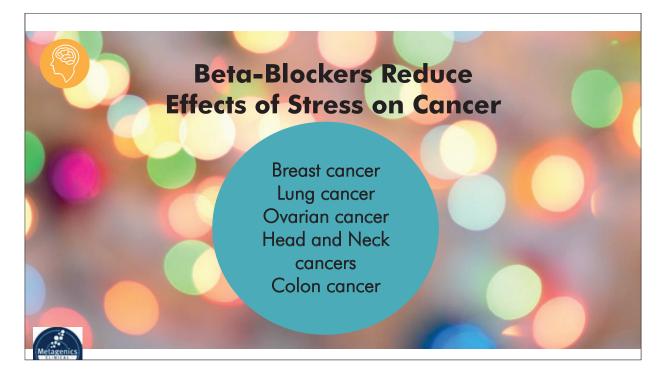







Key Elements of Psycho-oncology

- Support and connection
- Adjustment and adaptive skills
- Manage stressors of disease and treatment
- Mitigate effects of stress on tumour progression



Beta-Blockers Reduce Effects of Stress on Cancer

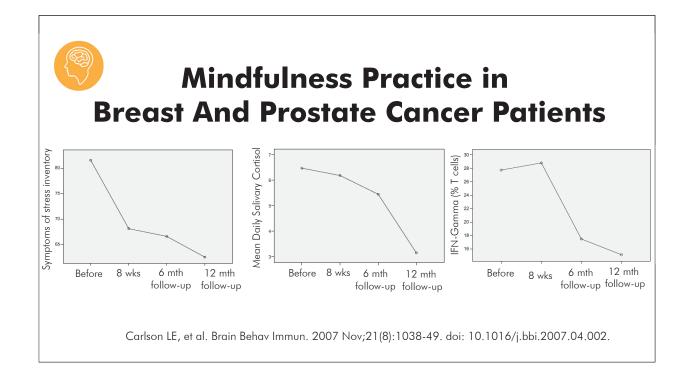
- Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: A phase II randomised trial. Clin Cancer Res. 2019 Nov 21. doi: 10.1158/1078-0432.CCR-19-2641.
- Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, et al. Src activation by βadrenoreceptors is a key switch for tumour metastasis. Nat Commun 2013;4:1403. doi: 10.1038/ncomms2413.
- Wang HM, Liao ZX, Komaki R, Welsh JW, O'Reilly MS, Chang JY, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Onocl. 2013 May;24(5):1312-9. doi: 10.1093/annonc/mds616.
- Watkins JL, et al. Clinical impact of selective and nonselective beta blockers on survival in patients with ovarian cancer. Cancer. 2015 Oct 1;121:(19):3444-51. doi: 10.1002/cncr.29392.

Ann Oncol. 2013 May;24(5):1312-9. doi: 10.1093/annonc/mds616. Epub 2013 Jan 8

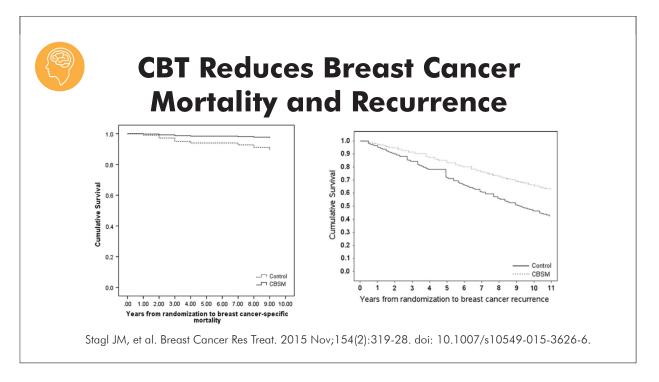
Improved survival outcomes with the incidental use of beta-blockers among patients with nonsmall-cell lung cancer treated with definitive radiation therapy.

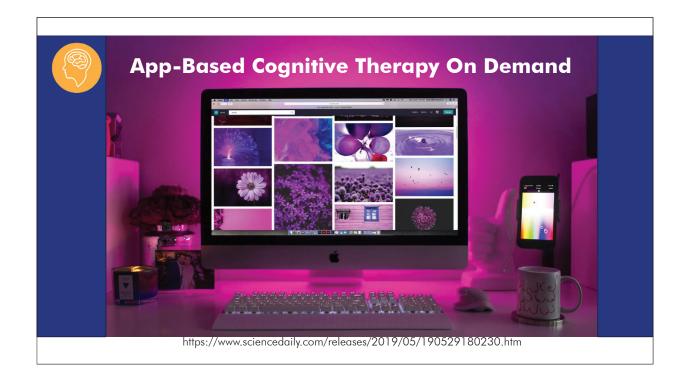
Wang HM¹, Liao ZX, Komaki R, Welsh JW, O'Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C, Gomez DR. Author information

Abstract

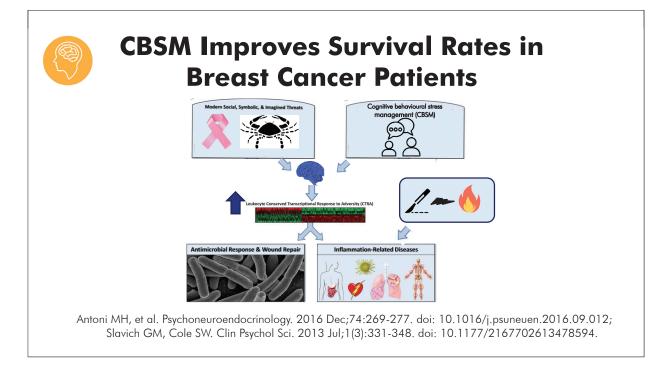

BACKGROUND: Preclinical studies have shown that norepinephrine can directly stimulate tumor cell migration and that this effect is mediated by the beta-adrenergic receptor.

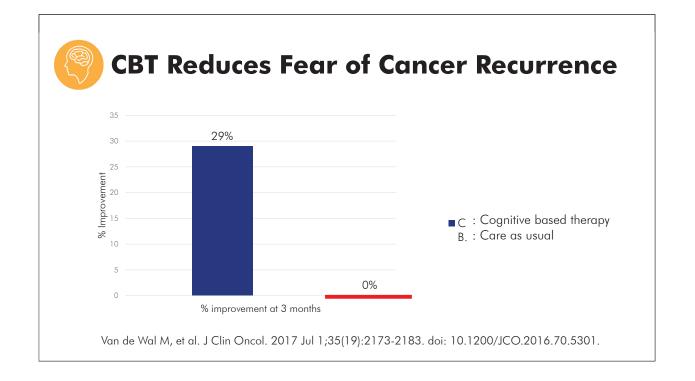
PATIENTS AND METHODS: We retrospectively reviewed 722 patients with non-small-cell lung cancer (NSCLC) who received definitive radiotherapy (RT). A Cox proportional hazard model was utilized to determine the association between beta-blocker intake and locoregional progression-free survival (LRPFS), distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival (OS).

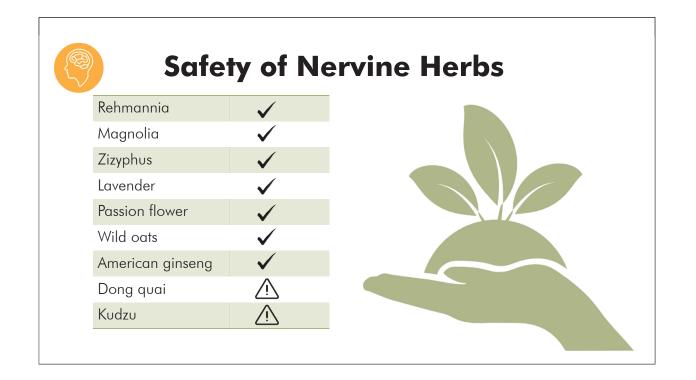

RESULTS: In univariate analysis, patients taking beta-blockers (n = 155) had improved DMFS (P < 0.01), DFS (P < 0.01), and OS (P = 0.01), but not LRPFS (P = 0.33) compared with patients not taking beta-blockers (n = 567). In multivariate analysis, beta-blocker intake was associated with a significantly better DMFS [hazard ratio (HR), 0.67; P = 0.01], DFS (HR, 0.74; P = 0.02), and OS (HR, 0.78; P = 0.02) with adjustment for age, Karnofsky performance score, stage, histology type, concurrent chemotherapy, radiation dose, gross tumor volume, hypertension, chronic obstructive pulmonary disease and the use of aspirin. There was no association of beta-blocker use with LRPFS (HR = 0.91, P = 0.63).

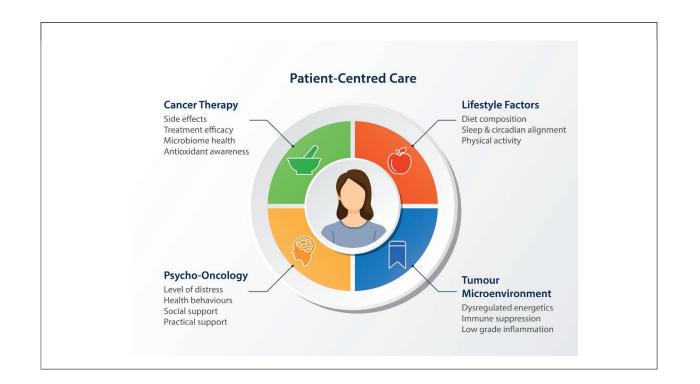

CONCLUSION: Beta-blocker use is associated with improved DMFS, DFS, and OS in this large cohort of NSCLC patients. Future prospective trials can validate these retrospective findings and determine whether the length and timing of beta-blocker use influence survival outcomes.

PMID: 23300016 PMCID: PMC3629895 DOI: 10.1093/annonc/mds616









Nervous System Support for Cancer Patients

	Treatment consideration	
Stress Management	Meta Mag® Magnesium, Taurine and Glutamine for Stress Vitamins B5, B6 and C for Stress and Adrenal Health	
Depression	BCM-95™ Turmeric and Saffron for Depression	
Anxiety	Herbal Support for Hyper HPA and Stress	
Chemotherapy "brain fog"	Lipid and Tocotrienols for Healthy Cell Membranes and Cognition Choline Bacopa/Gingko Complex	
N	Aetagenics Stress Less Program	

Technical Data Sheet

Highly Bioavailable Palmitoylethanolamide (PEA) With Endocannabinoid Action

Chronic pain affects 38% of the global population,¹ having detrimental effects on physical and emotional health, lowering quality of life (QOL)² and contributing to individual and societal economic burden.³ Chronic pain is driven by multiple complex mechanisms^{4,5,6} resultina in a hyperinflammatory-nociception cascade, with chronic immune cell activity. Pain and inflammation are mitigated by the endocannabinoid system (ECS) from the actions of endogenous cannabinoids, N-arachidonoylethanolamine (anandamide) and 2-arachidonylgylcerol (2-AG),^{7,8} and lipid-like mediators such as palmitoylethanolamide (PEA).^{9,10} Disruption or dysfunction in the synthesis of these endogenous compounds, leads to heightened and/or chronic pain and inflammation¹¹ which is often challenging to treat.¹² Current pharmaceutical therapies are either ineffective or offer partial resolution^{13,14,15,16,17,18} with common and/or numerous adverse effects.^{19,20} Multiple studies have demonstrated the efficacy of supplemental PEA in lowering chronic pain^{21,22,23,24,25,26,27,28,29,30,31} and promoting the resolution of inflammation (Figure 1).^{32,33,34,35,36} Without the potential for addiction and central nervous system (CNS) side effects^{37,38,39,40,41} PEA dosing ranges from 300 mg/d to 2,400 mg/d condition dependant. Additionally, it has been safely used alongside a range of medications including analgesics, anti-inflammatories, antidepressants and dopamine agonists.^{42,43,44,45} Absorption of standard supplemental PEA is hindered due to its lipophilic nature,⁴⁶ however the use of LipiSperse[®], a patented technology, significantly enhances absorption compared with standard forms of PEA.*

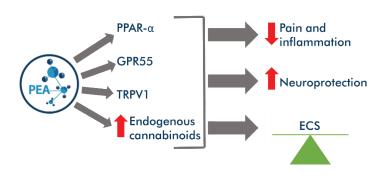


Figure 1: PEA actions. 47,48,49,50,51,52,53

Nutrients That May Assist Palmitoylethanolamide (PEA)

Actions

- Endocannabinoid system modulation
- Analgesic
- Anti-inflammatory
- Neuroprotective

Clinical Applications

- Chronic pain
 - o Neuropathic pain
 - o Compression neuropathy
 - o Chronic pain syndromes
 - o Arthritic pain
 - o Endometrial pain
- Neurodegenerative conditions
 - o Parkinson's disease
 - o Multiple sclerosis
 - Mild cognitive impairment and Alzheimer's disease

Dosing Considerations*

*Dosing regimens should be determined by appropriate assessment and monitoring.

 $^{^{*}}$ Levagen+ $^{\rm TM}$ combines LipiSperse $^{\rm \tiny (III)}$ with PEA for enhanced absorption.

Metagenics[•]

Background Technical Information

Palmitoylethanolamide (PEA)

PEA is a member of the family of bioactive lipids known at Nacylethanolamines (NAEs), which regulate the ECS.⁵⁴ PEA was isolated and identified as the anti-inflammatory component in egg yolks in 1957.⁵⁵ In 1970 its efficacy against the common cold and influenza was observed, thereafter it was sold in Europe for immune support.⁵⁶ In current years the focus has been on its analgesic, antiinflammatory and neuroprotective properties.^{57,58} In addition to being endogenously produced,⁵⁹ PEA is found in several foods including eggs, soy oil, peanut oil and human milk.⁶⁰

PEA, classified as an autacoid[†], is produced on demand from plasma membrane phospholipids in response to tissue damage and inflammation.⁶¹ Its synthesis is highly regulated by the enzymes N-acyltransferase and Nacylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD).^{62,63} The degradation of PEA occurs via fatty acid amide hydrolase (FAAH)⁶⁴ and N-acylethanolaminehydrolysing acid amidase (NAAA) (Figure 2).⁶⁵

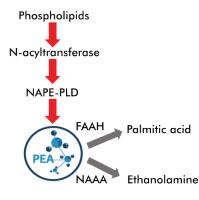


Figure 2: Synthesis and degradation of PEA.⁶⁶

Chronic Inflammation Reduces PEA Synthesis

Chronic inflammation influences endogenous levels of PEA, suppressing synthesis and elevating degradation,^{67,68} and low PEA levels hinder the resolution of inflammation.⁶⁹ Further, an inverse relationship exists between PEA levels in the CNS and pain threshold.⁷⁰ Thus, PEA supplementation may be therapeutically beneficial in chronic pain and inflammatory conditions.⁷¹

PEA Absorption Is Limited

PEA has poor water solubility⁷² limiting its absorption and bioavailability.⁷³ Micronisation of PEA improved bioavailability compared with nonmicronised PEA in animals.⁷⁴ Yet, even with micronisation, PEA remains

Technical Data Sheet

lipophilic resulting in aggregation and lower absorption at the hydrophilic gastrointestinal mucosal layer. These limitations are overcome with the addition of LipiSperse[®], a patented technology which lowers surface tension, prevents aggregation and increases the hydrophilic qualities of the PEA molecule.

A randomised, double-blind study comparing absorption capacity of PEA to PEA + LipiSperse[®] (Levagen + [™]) revealed absorption was 70% greater with the addition of LipiSperse[®].⁷⁵

Actions

Endocannabinoid System (ECS) Modulation

As a lipid messenger with cannabimimetic properties, PEA does not bind to the cannabinoid receptors 1 (CB1) and 2 (CB2), but instead increases their expression and/or activity indirectly.^{76,77} CB1 is densely expressed throughout the nervous system and plays an important role modulating pain pathways.^{78,79,80} CB2 receptors modulate inflammatory cytokine release⁸¹ and are predominantly expressed on immune cells,⁸² including mast cells, microglial cells^{83,84} and astrocytes.⁸⁵ The anti-inflammatory, analgesic and neuroprotective actions of PEA result from its effects on:

- Peroxisome proliferator-activated receptor alpha (PPAR-α) (Figure 3a)
- Orphan G-protein coupled receptor (GPR55) (Figure 3a)
- Transient receptor potential vanilloid type 1 (TRPV1) (Figure 3b, c, d)⁸⁶
- The 'entourage effect' whereby PEA raises tissue levels of anandamide and 2-AG, which act on TRPV1 in addition to CB1 and CB2 (Figure 3d)^{87,88,89,90}

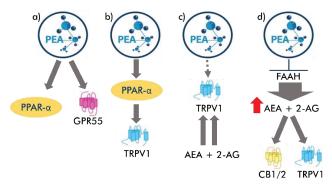


Figure 3: PEA targets.91

 $^{^{\}dagger}$ An autocoid is a physiologically active substance that has a localised effect for a brief duration.

Analgesic

The analgesic effects of PEA are partly achieved through the entourage effect.^{92,93,94} PEA inhibits anandamide degradation (Figure 3d)^{95,96} and potentiates the endocannabinoid's action at CB1 and CB2 receptors (Figure 3c).^{97,98,99}

The stimulation of TRPV1 by proinflammatory cytokines results in pain sensations.^{100,101} Desensitisation of TRPV1 with pharmaceutical antagonists effectively reduces pain, but not without undesirable effects.¹⁰² PEA increased the binding of anandamide to TRPV1,¹⁰³ desensitising the receptor, lowering neuronal calcium influx and elevating pain thresholds (Figure 3c).^{104,105,106}

The activation and desensitisation of TRPV1 was also increased through elevated PPAR- α activity induced by PEA (Figure 3b),¹⁰⁷ which diminished symptoms of allodynia in animals.¹⁰⁸

Anti-Inflammatory

The anti-inflammatory effects of PEA are partly attributed to its influence on PPAR- α (Figure 3a).^{109,110,111,112,113,114}

PPAR- α activation inhibits the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF κ B), which represses the synthesis of the proinflammatory cytokine tumour necrosis factor-alpha (TNF- α), and further limits the recruitment of immune cells.^{115,116} Reduced expression of PPAR- α , as observed in inflammatory conditions, is reversed with PEA supplementation.¹¹⁷

Anandamide has been shown to inhibit the translocation of NF κ B and the subsequent release of TNF- α .¹¹⁸ By way of the entourage effect (Figure 3d), PEA supplementation lead to a reduction in inflammatory cytokines and elevated plasma anandamide levels in patients with relapsing remitting multiple sclerosis (RRMS).¹¹⁹

'Reduced expression of PPAR-α as observed in inflammatory conditions is reversed with PEA supplementation.'

Another mechanism providing anti-inflammatory effects may be from PEA stimulation of GPR55¹²⁰ (Figure 3a) as proposed in a colitis model¹²¹ where high expression of GPR55 occurs in the gastrointestinal tract.¹²² However, the role of this receptor and its activation by PEA in the inflammatory response requires further clarification.¹²³

From indirect actions on CB2 receptors, PEA regulates mast cell activity. Mast cells are widely distributed throughout the body, including in the CNS,¹²⁴ peripheral nervous system,¹²⁵ synovium¹²⁶ and endometrial tissues,¹²⁷ and play a key role

Technical Data Sheet

in both systemic and neuro-inflammation.^{128,129,130} PEA was discovered in 1993 to modulate mast cells,^{131,132,133,134} shifting their phenotype from activated to resting,¹³⁵ and inhibiting their migration and degranulation, blocking the release of histamine, prostaglandin (PG) and TNF- α .¹³⁶

Neuroprotective

Following tissue damage or neuro-inflammation, neurons and microglial cells synthesise and release PEA^{137,138,139} and microglia migrate to the site of injury.¹⁴⁰ Supplemental PEA increased microglial migration by elevating PPAR- α activity.¹⁴¹ Further, PEA significantly raised microglial phagocytosis by 60%, mediated through heightened PPAR- α function.¹⁴² An impairment in microglial phagocytic clearance is associated with neurodegenerative diseases and cognitive decline.¹⁴³

'PEA treatment shifted the microglia back towards an anti-inflammatory phenotype through increased CB2 receptor activity.'

Additionally, repeated insults to the CNS shifts microglia towards a sustained proinflammatory M1 phenotype.¹⁴⁴ PEA treatment shifted the microglia back towards an antiinflammatory phenotype¹⁴⁵ by indirectly increasing CB2 receptor activity.¹⁴⁶

M1 microglia support astrocytes transformation towards a proinflammatory state.^{147,148} Chronic astrocytosis is linked with allodynia and hyperalgesia¹⁴⁹ and, in conjunction with blunted PPAR- α activity, is a feature of Alzheimer's disease (AD).¹⁵⁰ An AD model revealed PEA treatment increased the function of PPAR- α and converted astrocytes back to a resting phase.¹⁵¹

Raised PPAR- α activity lead to a greater synthesis of the intracellular neurosteroid, allopregnanolone, which increased GABA signalling¹⁵² and resistance to reactive oxygen species.¹⁵³ Further neuronal protection with supplemental PEA was provided via binding to GPR55 which:

- Reduced glutamate neurotransmission
- Enhanced GABA synaptic transmission
- Indirectly lowered GABAergic tone¹⁵⁴ which is increased with neuro-inflammation.¹⁵⁵

Chronic Pain

Neuropathic Pain

Peripheral neuropathic pain can be induced by diabetes¹⁵⁶ or develop as a side effect from some anticancer treatments.^{157,158} Table 1 provides a summary of research demonstrating PEA efficacy in neuropathic pain.

Study type	Dose of PEA	Duration	Outcome
Open label study - 30 participants with diabetic- induced peripheral neuropathy. ¹⁵⁹	600 mg/d	8 weeks	Significant reduction in intensity and presence of pain, paraesthesia, burning and numbness from baseline (p < 0.0001).
Cohort - 30 participants with either diabetic induced or traumatic neuropathic pain. ¹⁶⁰	1,200 mg/d	6 weeks	Lower pain scores and neuropathic symptoms compared with baseline.
Case study – male with diabetic induced neuropathic pain. ¹⁶¹	1,200 mg/d (combined with 300 mg/d of R-alpha lipoic acid)	16 weeks	Numerical rating score (NRS) for pain (scored out of 10, 10 being the most pain) dropped from 7 at baseline to 3 post treatment.
Case study – male with diabetic induced neuropathic pain. ¹⁶²	1,200 mg/d (combined with 300 mg/d of R-alpha lipoic acid and 2000IU of vitamin D)	12 weeks	NRS value dropped from 6 to 1.5 post treatment.
Single-blind controlled trial - 20 patients undergoing thalidomide and bortezomib treatment for multiple myeloma with concomitant neuropathic pain. ¹⁶³	600 mg/d	8 weeks	Patients reported a 24% reduction in pain scores from baseline to treatment conclusion.
Case study - male with prostate cancer who developed neuropathic pain after the second course of antineoplasm agent. ¹⁶⁴	1,200 mg/d	3 weeks	NRS for pain reduced from 7 to 1-2 post PEA treatment. Approximately six months later the patient was able to discontinue the use of his analgesics, using paracetamol occasionally.

Table 1: PEA use in neuropathic pain studies.

Compression Neuropathy

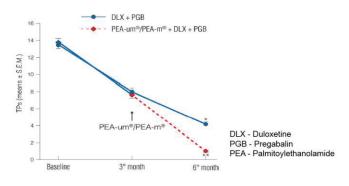
Pain resulting from nerve compression, as in the case of carpal tunnel syndrome (CTS) or sciatica, is common and

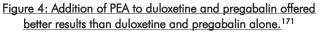
challenging to treat when severity is low and surgery is not indicated.¹⁶⁵ Table 2 highlights the benefits of administering PEA in CTS and lumbosciatica.

Table 2: PEA i	n compression	neuropathic conditions.

Study type	Dose of PEA	Duration	Outcome
Single-blind randomised placebo controlled trial – 50 participants with mild to moderate CTS. ¹⁶⁶	1,200 mg/d	8 weeks	The PEA group experienced a decrease in pain intensity, by 17.87% at treatment conclusion compared with the control group whose pain intensity increased by 14.43%.

A large scale pivotal randomised double-blind placebo controlled trial – 636 participants with lumbosciatica pain. ¹⁶⁷	300 mg/d or 600 mg/d	3 weeks	The group receiving 600 mg/d of PEA reported a significant improvement in QOL (p <0.001). Pain was reduced by greater than 50% compared with the 300 mg/d and placebo group.
Prospective randomise controlled trial – 118 participants with lumbosciatica. ¹⁶⁸	600 mg/d	4 weeks	PEA supplementation alongside standard treatments significantly decreased the visual analogue scale (VAS) pain score ($p < 0.000$) in patients compared with the standard treatments alone.

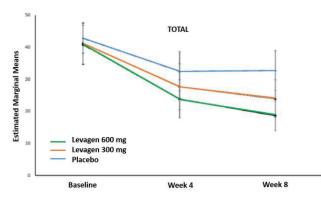

Chronic Pain Syndromes

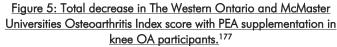

At present, treatment of the wide spread pain associated with fibromyalgia favours anti-epileptics, which provide on average a 30% reduction in pain intensity in approximately half of patients.¹⁶⁹

A study with two arms evaluated the efficacy of duloxetine and pregabalin together, or with the inclusion of PEA in reducing fibromyalgic pain in eighty participants over a six month period

The first arm was a retrospective study with 45 participants who received duloxetine and pregabalin for six months. The group experienced a reduction in tender points, evoked pain and VAS pain scores post treatment.

The second arm was a prospective observational study with 35 participants prescribed duloxetine and pregabalin for three months. At the end of the third month 600 mg/d of PEA was added to the regime for a further three months. The addition of PEA reduced the number of tender points from 8 down to 1 at treatment conclusion and the VAS pain score from 3.7 to 1.9 out of 10, 10 being worst pain. The addition of PEA gave better results over a three month period compared with duloxetine and pregabalin combination over six months (Figure 4).¹⁷⁰


The benefits of using PEA for pain reduction in multiple conditions was established in a study with 564 participants with different pathologies. Participants received 600 mg/d of PEA for three weeks followed by 300 mg/d for four weeks concomitant with existing analgesics. PEA treatment markedly decreased pain intensity for all participants, with an average decrease from 6.4 out of 10 to 2.5 at treatment conclusion.¹⁷²


Within this study a group of participants were able to discontinue existing analgesic therapy experiencing benefit with the use of PEA as standalone treatment.¹⁷³

Arthritic Pain

Arthritic pain results from the collaboration of inflammatory mediators, TRPV1 receptor expression,¹⁷⁴ and mast cell activation and degranulation.¹⁷⁵

The analgesic and anti-inflammatory effects of PEA was assessed in mild to moderate knee osteoarthritis (OA). A double-blind randomised placebo controlled trial with 111 participants received either placebo, 300 mg/d of PEA or 600 mg/d of PEA for eight weeks. At treatment conclusion pain and stiffness decreased by 53.7% in the 600 mg/d group and by 42% in the 300 mg/d group (Figure 5). At week four, total pain in the placebo group dropped by 25% with no further change.¹⁷⁶

Genetic Potential Through Nutrition Treatment with PEA, at 900 mg/d for seven days and then 600 mg/d for a further seven days, was compared with 1,800 mg/d of ibuprofen in participants with temporomandibular ising (TAAI) again. Pagin integriting a similar between around at

joint (TMJ) pain. Pain intensity was similar between groups at baseline however, PEA group experienced a significant reduction at treatment conclusion (p<0.0001) compared with the ibuprofen group (Figure 6).¹⁷⁸

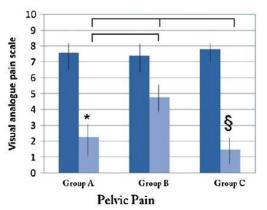

Treatment	Baseline VAS (mm)	Final VAS (mm)
Ibuprofen (n = 12)	68.42 ± 0.15	37.42 ± 0.36
PEA (n = 12)	69.96 ± 0.22	7.69 ± 0.19

Figure 6: Reduction in pain intensity with PEA treatment compared to ibuprofen in patients with TMJ pain.¹⁷⁹

Endometrial Pain

The aetiology of endometriosis is still largely undefined but it is understood that mast cells in endometriotic lesions and in deep infiltrating lesions proximal to the nerves contribute to the pain and inflammation associated with the condition.¹⁸⁰

PEA, in combination with polydatin, a natural glucoside of resveratrol, reduced pelvic pain associated with endometriosis in a double-blind randomised placebo controlled trial. Sixty one participants received either 800 mg/d of PEA and 80 mg/d of polydatin (group A), placebo (group B) or 400 mg/d of a cyclo-oxygenase-2 inhibitor (group C). The combination of PEA and polydatin (group A) produced a greater reduction in pelvic pain compared with the placebo (group B) (Figure 7).¹⁸¹

Figure 7: The combination of PEA at 800 mg/d and polydatin at 80 mg/d (group A) reduced pelvic pain compared with placebo (group B).¹⁸²

The significant reduction in chronic pelvic pain (p<0.05) with the combination of PEA and polydatin was observed in another study with participants with endometrial pain. Further to the large reduction in pain was the significant improvement in psychological wellbeing (p<0.0005).¹⁸³

Technical Data Sheet

Neurodegenerative Conditions

Parkinson's Disease

Oxidative stress and neuro-inflammation play a role in the pathogenesis and progression of PD, as demonstrated in animal models. Treatment with PEA in humans with PD and animal PD models has reduced disease severity¹⁸⁴ which may be attributed to its neuroprotective effects.

A prospective observational study revealed the benefits of adding PEA to levodopa in PD patients. At 600 mg/d for three months followed by 300 mg/d for a further 12 months, participants experienced significant reductions in symptoms of dyskinesia (Figure 8). Participants reported mood, sleep, fatigue and pain were significantly improved. Further, QOL was enhanced, with improvements in speech, tremors, getting out of bed, walking and balance.¹⁸⁵

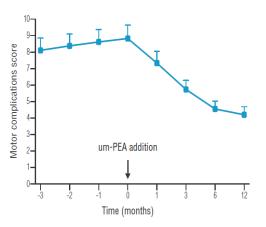
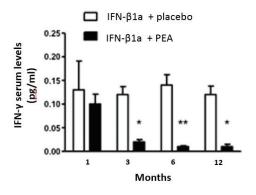


Figure 8: The addition of PEA to levodopa treatment lowers motor complications in PD patients.¹⁸⁶

In animal PD models, PEA dampened microglial and astroglial activation, protected dopaminergic neurons, improved motor responses and increased tyrosine hydroxylase expression, the enzyme that converts tyrosine to L-DOPA.¹⁸⁷

Multiple Sclerosis


First line therapy for treatment of relapsing remitting multiple sclerosis (RRMS) is interferon (IFN)- β 1a, yet pain and myalgia are commonly reported adverse effects, reducing patient compliance and thus affecting QOL.¹⁸⁸

PEA reduced adverse effects associated with IFN- β 1a treatment in a double-blind randomised placebo controlled trial. Twenty nine participants with RRMS received either 600 mg/d of PEA or placebo alongside IFN- β 1a therapy for 12

This document is for Practitioner distribution only

Genetic Potential Through Nutrition months. The addition of PEA significantly improved perceived pain at the site of injection, cognitive function and emotional wellbeing (p<0.05). Further, there were significant reductions in proinflammatory cytokine serum levels, IFN- γ (Figure 9), interleukin-17 and TNF- α levels (p<0.05).¹⁸⁹

Figure 9: PEA supplementation combined with IFN-β1a therapy significantly reduced IFN-γ levels in participants with RRMS.¹⁹⁰

Mild Cognitive Impairment and Alzheimer's Disease

Neuro-inflammation and microglial activation play a prominent role in the progression of mild cognitive impairment and AD. As the neuroprotective and antiinflammatory effects of PEA have been established in animal

Technical Data Sheet

models it was combined with the antioxidant luteolin and prescribed to a patient with mild cognitive impairment. Over a nine month period the patient received 700 mg/d of PEA in combination with 70 mg/d of luteolin. At the end of treatment significant improvements in cognitive function and short-term memory were observed with the patient gaining more independence with daily living tasks. In addition, this duo of nutrients improved cerebrovascular health, as indicated by the patient's single photon emission computed tomography (SPECT)[‡] scan, where signs of significant bilateral hypoperfusion prior to treatment had normalised.¹⁹¹

In animal AD models PEA administration:

- Reduced astrocytosis
- Lowered glial fibrillary acidic protein and \$100B protein (associated with neuro-inflammation)
- Inhibited tau hyperphosphorylation.¹⁹²

The application of PEA in conditions which prominently feature chronic pain and inflammation extends far beyond this discussion. Table 3 lists the versatility of PEA applications and Table 4 highlights its safety profile in combination with a range of medications. Further, due to the lack of adverse effects and its safety profile, the dosing for PEA has a large range, between 300 and 2,400 mg/d, as presented under dosing considerations.

Condition	Study Type	Dose of PEA	Duration	Outcome
Acute respiratory tract infection ¹⁹³	Randomised double-blind placebo controlled study (n=444)	1,800 mg/d	2 weeks	PEA treatment markedly reduced incidence of fever, headaches and sore throats.
Autism ¹⁹⁴	Case study (n=2)	600 mg/d 1,200 mg/d 600 mg/d	1 week 3 weeks 12 weeks	Patient one experienced remarkable improvements in behaviour, expressive language and atopic presentations. Patient two showed improvements in aggression, cognitive and behavioural skills.
Cerebral ischemia ¹⁹⁵	Observational study(n=250)	700 mg/d alongside 70 mg/d of luteolin bid	8 weeks	Significant improvement in cognitive function $(p < 0.0001)$, severity of muscle spasticity $(p < 0.0015)$, pain intensity $(p < 0.0001)$ and participants' independence and mobility $(p < 0.0001)$ in daily living activities.
Exercise recovery ¹⁹⁶	Randomised double-blind placebo controlled study (n=28)	600 mg/d (Levagen+™)	1 day	PEA lowered blood lactate concentrations, linked with anaerobic glucose metabolism, and myoglobin concentrations, associated with skeletal muscle damage.

Table 3: Use of supplemental PEA in other health conditions.

 $^{^{\}ddagger}$ Single photon emission computed tomography (SPECT) is an imaging test

to identify blood flow to tissues and organs.

	I Through Nutrition			
ldiopathic occipital neuralgia ¹⁹⁷	Case study (n=1)	1,200 mg/d	2 weeks	Patient, after experiencing adverse effects from gabapentin medication, experienced gradual and significant reduction in occipital pain over period of supplementation.
Lower back pain ¹⁹⁸	Pilot observational study with prospective and retrospective arms (n=55)	1,200 mg/d alongside Tapentadol	24 weeks	PEA plus tapentadol experienced a significantly greater reduction in intensity of pain and neuropathy in addition to reduced disability (p <0.0001). Further, the required dose of tapentadol was lowered by 40%.
Major depressive disorder ¹⁹⁹	Randomised double-blind placebo controlled study (n=54)	1,200 mg/d alongside citalopram	6 weeks	Significantly greater improvement in depressive symptoms in PEA combined with citalopram group (p<0.004) compared with placebo combined with citalopram.
Ocular hypertension ²⁰⁰	Randomised double-blind placebo controlled crossover study (n=40)	600 mg/d Two month wash out 600 mg/d	12 weeks 12 weeks	Supplementation with PEA resulted in an improvement in arterial blood flow and reduced intraocular pressure compared to both placebo and baseline values. Further, arterial blood flow readings continued to remain improved two months after discontinuation of PEA.
Post-surgery ²⁰¹	Randomised single- blind study (n=30)	300 mg/d	2 weeks	Post-operative pain significantly milder with PEA treatment (p<0.0001).
Vestibulodynia ²⁰²	Randomised double-blind placebo controlled study (n=20)	800 mg/d alongside 80 mg/d of transpolydatin and transcutaneous electrical nerve stimulation (TENS) therapy	8 weeks	PEA and transpolydatin with TENS therapy had a greater effect on symptom regression compared with TENS therapy alone.

Table 4: Studies demonstrating PEA safety when combined with existing medications.

Condition	Medication	Dose PEA	Duration
Anticancer drug-induced	Methotrexate, tramadol and	1,200 mg/d	15+ weeks
neuropathic pain ²⁰³	pregabalin		
Burning mouth syndrome ²⁰⁴	Gabapentin	1,200 mg/d	12 weeks
Fibromyalgia ²⁰⁵	Duloxetine and gabapentin	600 mg/d	12 weeks
Lower back pain ²⁰⁶	Oxycodone	1,200 mg/d	4 weeks
Lower back pain ²⁰⁷	Tapentadol	1,200 mg/d	24 weeks
Major depressive disorder ²⁰⁸	Citalopram	1,200 mg/d	6 weeks
Migraine with aura ²⁰⁹	NSAIDs	1,200 mg/d	12 weeks
Multiple sclerosis ²¹⁰	IFN-β1	600 mg/d	52 weeks
Parkinson's disease ²¹¹	Levodopa	600 mg/d	12 weeks
		300 mg/d	52 weeks
Prophylaxis treatment for	Topiramate	600 mg/d	16 weeks
nummular headache ²¹²			
Trigeminal neuralgia ²¹³	Carbamazepine	1,200 mg/d	6 weeks

Dosing Considerations

Condition	Dose Range	Duration
Common cold / influenza ²¹⁴	600 – 1,800 mg/d	2 – 9 weeks
Carpel tunnel syndrome ^{215,216,217,218}	600- 1,200 mg/d	4 – 8 weeks
Cognitive impairment – with luteolin ²¹⁹	700 mg/d + 70 mg Luteolin	36 weeks
Depression – with citalopram ²²⁰	1,200 mg/d	6 weeks
Dysmenorrhea with transpolydatin ²²¹	400 mg/d	
Neuropathic pain – including diabetic and traumatic ^{222,223}	600 – 1,200 mg/d	6 – 9 weeks
Endometriosis pain ^{224,225,226}	800 mg/d	12 – 26 weeks
Fibromyalgia ^{227,228}	1,800 mg/d	First 2 weeks
	1,200 mg/d	Next 3 weeks
	600 mg/d	Up to 60 weeks
Glaucoma ²²⁹	600 mg/d	2 – 26 weeks
Lumbosciatica / lower back pain ^{230,231,232}	600 – 1,200 mg/d	4 – 24 weeks
Neuropathy Chemotherapy induced) ²³³	600 mg/d	8 weeks
Osteoarthritis pain ^{234,235}	300 mg – 600 mg/d	8 weeks
Pain relief (general) ^{236,237}	300 mg – 1,200 mg/d	2 – 25 weeks
Parkinson's disease ²³⁸	1,200 – 2,400 mg	12 – 52 weeks
Radiculopathy (compressed nerve pain)	600 mg	17 weeks
Sciatica pain (chronic) – see also lower	300 mg – 600 mg/d	3 weeks
back pain ^{239,240.241,242}	** up to 1,200 mg/d	
Stroke – with luteolin ²⁴³	1,400 mg/d	8 weeks
Molar surgery ²⁴⁴	600 mg/d	2 weeks
Multiple sclerosis ^{245,246}	600 – 1,200 mg/d	32 – 52 weeks
Vestibulodynia (with transcranial magnetic stimulation therapy) ²⁴⁷	800 mg/d	8 weeks

Cautions and Contraindications

Cautions - Low Level

• None of note

Cautions – Moderate Level

• None of note

Cautions – High Level

• **Prescription analgesic medications:** PEA exerts an analgesic effect.²⁴⁸ Use of PEA alongside analgesics may theoretically lead to an additive or synergistic analgesic effect. When taken alongside <u>prescription</u> pharmaceutical analgesics, PEA has been shown to exert an additive analgesic effect in human studies,^{249,250,251,252} and a synergistic analgesic effect in murine studies.^{253,254} It should be noted that minimal adverse side effects have been reported with use of PEA alongside pharmaceutical analgesics in humans to date.^{255,256} Monitor in those patients taking PEA alongside prescription analgesic medications as dosage may need adjusting.

Genetic Potential Through Nutrition

Pregnancy and Breastfeeding

Pregnancy

• Limited/unavailable research. A review did not identify any concerns for use during pregnancy, however safety has not been conclusively established in humans.

Breastfeeding

• A review did not identify any concerns for use during breastfeeding, however safety has not been conclusively established in humans.

Children

• No information available.

References

² Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of

- ⁴ Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.
- ⁵ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.
- ⁶ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.
- ⁷ Grotenhermen F. Cannabinoids and the endocannabinoid system. Cannabinoids. 2006;1(1):10-4.
- ⁸ Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.
- ⁹ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.
- ¹⁰ Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016 Apr 1;79(7):516-25. doi: 10.1016/j.biopsych.2015.07.028.
- ¹¹ Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.

¹² Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.

- ¹³ Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015 Feb;14(2):162-73. doi: 10.1016/S1474-4422(14)70251-0.
- ¹⁴ Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.
- ¹⁵ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.
- ¹⁶ Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.
- ¹⁷ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.
- ¹⁸ Marcucci M, Germini F, Coerezza A, Andreinetti L, Bellintani L, Nobili A, et al. Efficacy of ultra-micronized palmitoylethanolamide (um-PEA) in geriatric patients with chronic pain: study protocol for a series of N-of-1randomized trials. Trials. 2016 Jul 29;17:369. doi: 10.1186/s13063-016-1496-9.
- ¹⁹ Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.
- ²⁰ Gatti Å, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.
- ²¹ Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.
- ²² Cocito D, Peci E, Ciaramitaro P, Merola A, Lopiano L. Short-term efficacy of ultramicronized palmitoylethanolamide in peripheral neuropathic pain. Pain Res Treat. 2014;2014:854560. doi: 10.1155/2014/854560.
- ²³ Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapyinduced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.
- ²⁴ Hesselink JM, Hekker TÁ. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.
- ²⁵ Assini A, Laricchia D, Pizzo R, Pandolfini L, Belletti M, Colucci M, et al. The carpal tunnel syndrome in diabetes: clinical and electrophysiological improvement after treatment with palmitoylethanolamide: P1577. Eur J Neurol. 2010 Sep 17;12(3):295-295.
- ²⁶ Guida G, De Martino M, De Fabiani A, Canterieri L, Alexandre A, Vassallo GM, et al. Palmitoylethanolamide (Normast[®]) in chronic neuropathic pain due to compression lumbociatalgia: a multicenter clinical study. DOLOR. 2010:25(1):35-42.
- ²⁷ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

¹ Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.

palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9. ³ Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

²⁸ Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

²⁹ Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.

³⁰ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

³¹ Cobellis L, Castaldi MA, Giordano V, Trabucco E, De Franciscis P, Torella M, et al. Effectiveness of the association micronized N-palmitoylethanolamine (PEA)transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: a pilot study. Eur J Obstet Gynecol Reprod Biol. 2011 Sep;158(1):82-6. doi: 10.1016/j.ejogrb.2011.04.011.

³² Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

³³ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

³⁴ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

³⁵ Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, et al. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis. 2014 Sep 11;5:e1419. doi: 10.1038/cddis.2014.376.

³⁶ Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

³⁷ Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

³⁸ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

³⁹ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

⁴⁰ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

⁴¹ Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

⁴² Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.
 ⁴³ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the

⁴³ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

⁴⁴ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

⁴⁵ Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012 Mar;2(2):119-24. doi:10.2217/pmt.12.5.

⁴⁶ Impellizzeri D, Bruschetta G, Cordaro M, Crupi R, Siracusa R, Esposito E, et al. Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain. J Neuroinflammation. 2014 Aug 28;11:136. doi: 10.1186/s12974-014-0136-0.

⁴⁷ Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

⁴⁸ Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, et al. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016 Apr;173(7):1154-62. doi: 10.1111/bph.13084.

⁴⁹ Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017 Jul;20(5):353-362. PMID: 28727699.

⁵⁰ Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

⁵¹ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

⁵² Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

⁵³ Ambrosino P, Soldovieri MV, Russo C, Taglialatela M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide. Br J Pharmacol. 2013 Mar;168(6):1430-44. doi:10.1111/bph.12029.

⁵⁴ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

⁵⁵ Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

⁵⁶ Keppel Hesselink JM, de Boer T, Witkamp RF. Palmitoylethanolamide: a natural body-own anti-inflammatory agent, effective and safe against influenza and common cold. Int J Inflam. 2013;2013:151028. doi: 10.1155/2013/151028.

⁵⁷ Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

⁵⁸ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

⁵⁹ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

⁶⁰ Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007

⁶² Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

63 Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007

⁶⁴ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

65 Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

⁶⁶ Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017 Jun;174(11):1349-1365. doi: 10.1111/bph.13580.

⁶⁷ Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

68 Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

69 Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:0.1007/s10787-013-0191-7.

⁷⁰ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

⁷¹ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.

⁷² Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer's disease. Front Pharmacol. 2019 Jul 24;10:821. doi: 10.3389/fphar.2019.00821.

⁷³ Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

⁷⁴ Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

Briskey D, Mallard AR, Rao A. Increased absorption of palmitoylethanolamide using a novel dispersion technology system (LipiSperse®). [cited 2020 2 25].

⁷⁶ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.

⁸⁰ Grotenhermen F. Cannabinoids and the endocannabinoid system. Cannabinoids. 2006;1(1):10-4.

⁸¹ Grotenhermen F. Cannabinoids and the endocannabinoid system. Cannabinoids. 2006;1(1):10-4.

⁸² Wang J. Glial endocannabinoid system in pain modulation. Int J Neurosci. 2019 Jan;129(1):94-100. doi: 10.1080/00207454.2018.1503178.

⁸³ Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS Neurol Disord Drug Targets. 2009 Dec;8(6):403-21. PMID: 19839937.

⁸⁴ Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S. Cannabinoid receptor 2 signalling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front Neurosci. 2017 Feb 2;11:30. doi:10.3389/fnins.2017.00030.

⁸⁵ Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S. Cannabinoid receptor 2 signalling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front Neurosci. 2017 Feb 2;11:30. doi:10.3389/fnins.2017.00030.

Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

⁸⁷ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

⁸⁸ Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

89 Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

90 Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, et al. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016 Apr;173(7):1154-62. doi: 10.1111/bph.13084.

Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017 Jun;174(11):1349-1365. doi: 10.1111/bph.13580.

⁹² Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

94 Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, et al. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016 Apr; 173(7): 1154-62. doi: 10.1111/bph.13084.

95 Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

96 Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.

97 Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623. This document is for Practitioner distribution only

Genetic Potential Through Nutrition

⁹⁸ Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

⁹⁹ Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019 Sep 11;11(9).e2175. doi: 10.3390/nu11092175.

¹⁰⁰ Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.

¹⁰¹ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

¹⁰² Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

¹⁰³ Ambrosino P, Soldovieri MV, Russo C, Taglialatela M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARa agonist palmitoylethanolamide. Br J Pharmacol. 2013 Mar;168(6):1430-44. doi: 10.1111/bph.12029.

¹⁰⁴ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

¹⁰⁵ Keppel Hesselⁱnk JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

¹⁰⁶ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹⁰⁷ Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, et al. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016 Apr;173(7):1154-62. doi: 10.1111/bph.13084.

¹⁰⁸ Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.
¹⁰⁹ Alburgurak M. Muscieli, GG. Harmassing the anti-inflammatory patential of palmitoylethanolamide. Drug Discov Today. 2014 Oct:19(10):1632.9. doi:

¹⁰⁹ Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

¹¹⁰ Schifill^{iti} C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

¹¹¹ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹¹² Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹¹³ Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

¹¹⁴ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli À, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

¹¹⁵ Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

¹¹⁶ Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.

¹¹⁷ Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today. 2014 Oct;19(10):1632-9. doi: 10.1016/j.drudis.2014.06.007.

¹¹⁸ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

¹¹⁹ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

¹²⁰ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹²¹ Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer's disease. Front Pharmacol. 2019 Jul 24;10:821. doi: 10.3389/fphar.2019.00821.

¹²² Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹²³ Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer's disease. Front Pharmacol. 2019 Jul 24;10:821. doi: 10.3389/fphar.2019.00821.

¹²⁴ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

¹²⁵ Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

¹²⁶ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

¹²⁷ Stochino Loi E, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, et al. Effect of ultramicronized-palmitoylethanolamide and co-micronized palmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: an open-label pilot study. Int J Womens Health. 2019 Aug 12;11:443-449. doi: 10.2147/IJWH.S204275.

¹²⁸ Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

¹²⁹ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

¹³⁰ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

¹³¹ Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017 Jul;20(5):353-362. PMID: 28727699.

Genetic Potential Through Nutrition

¹³² Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

³⁴ Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C, et al. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapyinduced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.

135 Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015 Oct 23;8:729-34. doi: 10.2147/JPR.S93106.

¹³⁶ Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.

³⁷ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

138 Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

¹³⁹ Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation. 2016 Mar 22;13(1):65. doi: 10.1186/s12974-016-0529-3.

141 Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

142 Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

143 Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019 Apr;568(7751):187-192. doi: 10.1038/s41586-019-1088-4.

144 Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

145 Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017 Jul;20(5):353-362. PMID: 28727699

146 Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1.

Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.

148 Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

¹⁴⁹ Alshelh Z, Mills EP, Kosanovic D, Di Pietro F, Macey PM, Vickers ER, et al. Effects of the glial modulator palmitoylethanolamide on chronic pain intensity and brain function. J Pain Res. 2019 Aug 2;12:2427-2439. doi: 10.2147/JPR.S209657.

150 Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, et al. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis. 2014 Sep 11;5:e1419. doi: 10.1038/cddis.2014.376.

¹⁵¹ Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, et al. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis. 2014 Sep 11;5:e1419. doi: 10.1038/cddis.2014.376.

¹⁵² Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

153 Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

¹⁵⁴ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

155 Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. Published 2016 Apr 18. doi:10.1186/s12974-016-0549-z.

156 Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

⁷ Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapyinduced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.

158 Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice. J Pharmacol Exp Ther. 2016 Nov;359(2):310-318. PMID: 27608657.

¹⁵⁹ Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

50 Cocito D, Peci E, Ciaramitaro P, Merola A, Lopiano L. Short-term efficacy of ultramicronized palmitoylethanolamide in peripheral neuropathic pain. Pain Res Treat. 2014;2014:854560. doi: 10.1155/2014/854560.

161 Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.

162 Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.

163 Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapyinduced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.

164 Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437-42. doi: 10.2147/JPR.S32143.

165 Faig-Martí J, Martínez-Catassús A. Use of palmitoylethanolamide in carpal tunnel syndrome: a prospective randomized study. J Orthop Traumatol. 2017 Dec;18(4):451-455. doi: 10.1007/s10195-017-0453-z.

166 Assini A, Laricchia D, Pizzo R, Pandolfini L, Belletti M, Colucci M, et al. The carpal tunnel syndrome in diabetes: clinical and electrophysiological improvement after treatment with palmitoylethanolamide: P1577. Eur J Neurol. 2010 Sep 17;12(3):295-295. This document is for Practitioner distribution only

¹⁶⁷ Guida G, De Martino M, De Fabiani A, Canterieri L, Alexandre A, Vassallo GM, et al. Palmitoylethanolamide (Normast®) in chronic neuropathic pain due to compression lumbociatalgia: a multicenter clinical study. DOLOR. 2010:25(1):35-42.

168 Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012 Mar;2(2):119-24. doi:10.2217/pmt.12.5.

169 Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

¹⁷⁰ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

171 Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalaja: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

172 Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi: 10.1111/j.1526-4637.2012.01432.x.

173 Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi: 10.1111/j.1526-4637.2012.01432.x.

¹⁷⁴ Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol. 2017 Sep;4(3):210-218. doi:10.5152/eurjrheum.2017.17025.

⁷⁵ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99

176 Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.

Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.

⁷⁸ Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

179 Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

Stochino Loi E, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, et al. Effect of ultramicronized-palmitoylethanolamide and co-micronized palmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: an open-label pilot study. Int J Womens Health. 2019 Aug 12;11:443-449. doi: 10.2147/IJWH.S204275.

181 Cobellis L, Castaldi MA, Giordano V, Trabucco E, De Franciscis P, Torella M, et al. Effectiveness of the association micronized N-palmitoylethanolamine (PEA)transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: a pilot study. Eur J Obstet Gynecol Reprod Biol. 2011 Sep;158(1):82-6. doi: 10.1016/j.ejogrb.2011.04.011.

182 Cobellis L, Castaldi MA, Giordano V, Trabucco E, De Franciscis P, Torella M, et al. Effectiveness of the association micronized N-palmitoylethanolamine (PEA)transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: a pilot study. Eur J Obstet Gynecol Reprod Biol. 2011 Sep;158(1):82-6. doi: 10.1016/j.ejogrb.2011.04.011.

183 Stochino Loi E, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, et al. Effect of ultramicronized-palmitoylethanolamide and co-micronized palmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: an open-label pilot study. Int J Womens Health. 2019 Aug 12;11:443-449. doi: 10.2147/IJWH.S204275.

184 Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

185 Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

186 Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

188 Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-B1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

189 Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

190 Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-\$1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

Calabrò RS, Naro A, De Luca R, Leonardi S, Russo M, Marra A, et al. PEALut efficacy in mild cognitive impairment: evidence from a SPECT case study. Aging Clin Exp Res. 2016 Dec;28(6):1279-1282. 2016 Jan 28. PMID: 26820462.

192 Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, et al. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis. 2014 Sep 11;5:e1419. doi: 10.1038/cddis.2014.376.

193 Masek K, Perlík F, Klíma J, Kahlich R. Prophylactic efficacy of N-2-hydroxyethyl palmitamide (impulsin) in acute respiratory tract infections. Eur J Clin Pharmacol. 1974;7(6):415-419. doi:10.1007/bf00560353.

¹⁹⁴ Antonucci N, Cirillo A, Siniscalco D. Beneficial effects of palmitoylethanolamide on expressive language, cognition, and behaviors in autism: a report of two cases. Case Rep Psychiatry. 2015;2015:325061. doi:10.1155/2015/325061.

195 Caltagirone C, Cisari C, Schievano C, Di Paola R, Cordaro M, Bruschetta G et al. Co-ultramicronized palmitoylethanolamide/luteolin in the treatment of cerebral ischemia: from rodent to man. Transl Stroke Res. 2016 Feb;7(1):54-69. doi: 10.1007/s12975-015-0440-8.

196 Mallard A, Briskey D, Richards A, Mills D, Rao A. The effect of orally dosed Levagen + 11 (palmitoylethanolamide) on exercise recovery in healthy males—a doubleblind, randomized, placebo-controlled study. Nutrients. 2020 Mar;12(3):596.

¹⁹⁷ Calabrò RS, Bramanti P. Occipital neuralgia responding to palmitoylethanolamide. Headache. 2017 Nov;57(10):E23-E24. doi: 10.1111/head.12136.

¹⁹⁸ Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiol. 2017 Dec 19;17(1):171. doi: 10.1186/s12871-017-0461-9.

Genetic Potential Through Nutrition

¹⁹⁹ Ghazizadeh-Hashemi M, Ghajar A, Shalbafan MR, Ghazizadeh-Hashemi F, Afarideh M, Malekpour F, et al. Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial. J Affect Disord. 2018 May;232:127-133. doi:10.1016/j.jad.2018.02.057.
²⁰⁰ Strobbe E, Cellini M, Campos EC. Effectiveness of palmitoylethanolamide on endothelial dysfunction in ocular hypertensive patients: a randomized, placebocontrolled cross-over study. Invest Ophthalmol. 2013 Feb 1;54(2):968-73.

²⁰¹ Bacci C, Cassetta G, Emanuele B, Berengo M. Randomized split-mouth study on postoperative effects of palmitoylethanolamide for impacted lower third molar surgery. ISRN Surg. 2011;2011:917350. doi: 10.5402/2011/917350.

²⁰² Murina F, Graziottin A, Felice R, Radici G, Tognocchi C. Vestibulodynia: synergy between palmitoylethanolamide + transpolydatin and transcutaneous electrical nerve stimulation. J Low Genit Tract Dis. 2013 Apr;17(2):111-6. doi: 10.1097/LGT.0b013e3182652316.

²⁰³ Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437–442. doi:10.2147/JPR.S32143.

²⁰⁴ Chirchiglia D, Chirchiglia P, Marotta R, Gallelli L. Add-on administration of ultramicronized palmitoylethanolamide in the treatment of new-onset burning mouth syndrome. Int Med Case Rep J. 2019 Feb 15;12:39–42. doi:10.2147/IMCRJ.S194403.

²⁰⁵ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

²⁰⁶ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.

²⁰⁷ Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiol. 2017 Dec 19;17(1):171. doi: 10.1186/s12871-017-0461-9.

²⁰⁸ Ghazizadeh-Hashemi M, Ghajar A, Shalbafan MR, Ghazizadeh-Hashemi F, Afarideh M, Malekpour F, et al. Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial. J Affect Disord. 2018 May;232:127-133. doi:10.1016/j.jad.2018.02.057.
²⁰⁹ Chirchiglia D, Cione E, Caroleo MC, Wang M, Di Mizio G, Faedda N, et al. Effects of add-on ultramicronized N-palmitolethanolamide in patients suffering of migraine with aura: a pilot study. Front Neurol. 2018 Aug 17;9:674. doi:10.3389/fneur.2018.00674.

²¹⁰ Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

²¹¹ Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

²¹² Chirchiglia D, Della Torre A, Signorelli F, Volpentesta G, Guzzi G, Stroscio CA, et al. Administration of palmitoylethanolamide in combination with topiramate in the preventive treatment of nummular headache. Int Med Case Rep J. 2016 Jul 18;9:193–195. doi:10.2147/IMCRJ.S106323.

²¹³ Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, et al. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology. 2014 Apr;22(2):79-94. doi:10.1007/s10787-013-0191-7.

²¹⁴ Keppel Hesselink JM, de Boer T, Witkamp RF. Palmitoylethanolamide: a natural body-own anti-inflammatory agent, effective and safe against influenza and common Cold. Int J Inflam. 2013;2013:151028. doi: 10.1155/2013/151028.

²¹⁵ Assini A, Laricchia D, Pizzo R, Pandolfini L, Belletti M, Colucci M, et al. The carpal tunnel syndrome in diabetes: clinical and electrophysiological improvement after treatment with palmitoylethanolamide: P1577. Eur J Neurol. 2010 Sep 17;12(3):295-295.

²¹⁶ Coraci D, Loreti C, Granata G, Arezzo MF, Padua L. Carpal tunnel syndrome treatment with palmitoylethanolamide: neurophysiology and ultrasound show small changes in the median nerve. Rheumatol Int. 2018 Jul;38(7):1307-1309. doi:10.1007/s00296-018-4064-7.

²¹⁷ Faig-Martí J, Martínez-Catassús A. Use of palmitoylethanolamide in carpal tunnel syndrome: a prospective randomized study. J Orthop Traumatol. 2017 Dec;18(4):451-455. doi: 10.1007/s10195-017-0453-z.

²¹⁸ Conjuliaro R, Drago V, Foster PS, Schievano C, Di Marzo V. Use of palmitoylethanolamide in the entrapment neuropathy of the median in the wrist. Minerva Med. 2011 Apr;102(2):141-7. PMID: 21483401.

²¹⁹ Calabrò RS, Naro A, De Luca R, Leonardi S, Russo M, Marra A, et al. PEALut efficacy in mild cognitive impairment: evidence from a SPECT case study. Aging Clin Exp Res. 2016 Dec;28(6):1279-1282. 2016 Jan 28. PMID: 26820462.

²²⁰ Ghazizadeh-Hashemi M, Ghajar A, Shalbafan MR, Ghazizadeh-Hashemi F, Afarideh M, Malekpour F, et al. Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial. J Affect Disord. 2018 May;232:127-133. doi:10.1016/j.jad.2018.02.057.

²²¹ Tartaglia E, Armentano M, Giugliano B, Sena T, Giuliano P, Loffredo C, et al. Effectiveness of the association N-palmitoylethanolamine and transpolydatin in the treatment of primary dysmenorrhea. J Pediatr Adolesc Gynecol. 2015 Dec;28(6):447-50. doi: 10.1016/j.jpag.2014.12.011.

²²² Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623. doi: 10.1155/2014/849623.

²²³ Cocito D, Peci E, Ciaramitaro P, Merola A, Lopiano L. Short-term efficacy of ultramicronized palmitoylethanolamide in peripheral neuropathic pain. Pain Res Treat. 2014;2014:854560. doi: 10.1155/2014/854560.

²²⁴ Cobellis L, Castaldi MA, Giordano V, Trabucco E, De Franciscis P, Torella M, et al. Effectiveness of the association micronized N-palmitoylethanolamine (PEA)transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: a pilot study. Eur J Obstet Gynecol Reprod Biol. 2011 Sep;158(1):82-6. doi: 10.1016/j.ejogrb.2011.04.011.

²²⁵ Giugliano E, Cagnazzo E, Soave I, Lo Monte G, Wenger JM, Marci R. The adjuvant use of N-palmitoylethanolamine and transpolydatin in the treatment of endometriotic pain. Eur J Obstet Gynecol Reprod Biol. 2013 Jun;168(2):209-13. doi: 10.1016/j.ejogrb.2013.01.009.

²²⁶ Di Francesco A, Pizzigallo D. Use of micronized palmitoylethanolamide and trans-polydatin in chronic pelvic pain associated with endometriosis: an open-label study. Giornale Italiano di Ostetricia e Ginecologia CIC Edizioni Internazionali.2014 May 30;36(2):353-358.

²²⁷ Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in fibromyalgia: results from prospective and retrospective observational studies. Pain Ther. 2015 Dec;4(2):169-78. doi:10.1007/s40122-015-0038-6.

²²⁸ Schweiger V, Martini A, Bellamoli P, Donadello K, Schievano C, Balzo GD, et al. Ultramicronized palmitoylethanolamide(um-PEA) as add-on treatment in fibromyalgia syndrome (FMS): retrospective observational study on 407 patients. CNS Neurol Disord Drug Targets. 2019;18(4):326-333. doi: 10.2174/1871527318666190227205359.

²²⁹ Keppel Hesselink JM, Costagliola C, Fakhry J, Kopsky DJ. Palmitoylethanolamide, a natural retinoprotectant: its putative relevance for the treatment of glaucoma and diabetic retinopathy. J Ophthalmol. 2015;2015:430596. doi: 10.1155/2015/430596.

²³⁰ Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012 Mar;2(2):119-24. doi:10.2217/pmt.12.5.

²³¹ Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiol. 2017 Dec 19;17(1):171. doi: 10.1186/s12871-017-0461-9.

Genetic Potential Through Nutrition

²³² Desio P. Combination of oxycodone and palmitoylethanolamide for low back pain treatment. AMC. 2011;1(2):62–71.

233 Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapyinduced painful neuropathy. CNS Neurol Disord Drug Targets. 2011 Dec;10(8):916-20. PMID: 22229320.

⁴ Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9.

35 Marini I, Lavinia Bartolucci M, Bortolotti F, Rosaria Gatto M, Alessandri Bonetti G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J Orofac Pain. 2012 Apr 1;26(2):99.

236 Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017 Jul;20(5):353-362. PMID: 28727699.

237 Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012 Sep;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

238 Brotini S, Schievano C, Guidi L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2017;16(6):705-713. doi: 10.2174/1871527316666170321124949.

239 Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012 Mar;2(2):119-24. doi:10.2217/pmt.12.5.

240 Guida G, De Martino M, De Fabiani A, Canterieri L, Alexandre A, Vassallo GM, et al. Palmitoylethanolamide (Normast®) in chronic neuropathic pain due to compression lumbociatalgia: a multicenter clinical study. DOLOR. 2010:25(1):35-42.

²⁴¹ Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res. 2015;8:729-734. doi:10.2147/JPR.S93106.

242 Guida G, Cantieri L, Petrosino S. Reduction of the consumption of anti-inflammatory drugs and analgesics in the treatment of chronic neuropathic pain in patients affected by compressive lumbociatalgia and in treatment with Normast® 300 mg. Pain. Clin & Thera Res 2010; 25(4):227-234.

243 Caltagirone C, Cisari C, Schievano C, Ďi Paola R, Cordaro M, Bruschetta G, et al. Co-ultramicronized palmitoylethanolamide/luteolin in the treatment of cerebral ischemia: from rodent to man. Transl Stroke Res. 2016 Feb;7(1):54-69. doi: 10.1007/s12975-015-0440-8.

244 Bacci C, Cassetta G, Emanuele B, Berengo M. Randomized split-mouth study on postoperative effects of palmitoylethanolamide for impacted lower third molar surgery. ISRN Surg. 2011;2011:917350. doi: 10.5402/2011/917350.

245 Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-\u00c31a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016 Apr;13(2):428-38. doi: 10.1007/s13311-016-0420-z.

²⁴⁶ Kopsky DJ, Hesselink JM. Multimodal stepped care approach with acupuncture and PPAR-α agonist palmitoylethanolamide in the treatment of a patient with multiple sclerosis and central neuropathic pain. Acupunct Med. 2012 Mar;30(1):53-5. doi: 10.1136/acupmed-2011-010119.

¹⁷ Murina F, Graziottin A, Felice R, Radici G, Tognocchi C. Vestibulodynia: synergy between palmitoylethanolamide + transpolydatin and transcutaneous electrical nerve stimulation. J Low Genit Tract Dis. 2013 Apr;17(2):111-6. doi: 10.1097/LGT.0b013e3182652316.

248 Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

²⁴⁹ Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019 Dec;36(12):1134-1154. doi: 10.1177/1049909119850807.

²⁵⁰ Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.

Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017 Jul;20(5):353-362. PMID: 28727699.

252 Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G. Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician. 2016;19(2):11–24. ²⁵³ Déciga-Campos M, Ramírez-Marín PM, López-Muñoz FJ. Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse

formalin test. Eur J Pharmacol. 2015;765:68–74. doi:10.1016/j.ejphar.2015.08.025.

⁴ Russo R, LoVerme J, La Rana G, D'Agostinoa G, Sassoa O, Calignano A, et al. Synergistic antinociception by the cannabinoid receptor agonist anandamide and the PPAR-alpha receptor agonist GW7647. Eur J Pharmacol. 2007;566(1-3):117–9. doi:10.1016/j.ejphar.2007.03.007

255 Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020.

Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012;13(9):1121-30. doi:10.1111/j.1526-4637.2012.01432.x.